Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
MicroRNAs (miRNAs) therapy has shown to have great promise for the treatment of androgen-independent prostate cancer (AIPC) due to the low efficiency of hormonal therapy. However, instability of RNA and inefficiency of RNA therapy limit the use of miRNAs in the treatment of AIPC. Here, we report a pH/ATP-activated nanocomplexes for increasing cytosolic delivery of miR146a which can effectively inhibit the expression of epidermal growth factor receptor (EGFR) in AIPC. The nanocomplexes show identical suppressing effect in invasion, colony formation, migration ability, and growth of DU145 cells compared with Lipofectamine 2000 (lipo). But for in vivo experiments, the nanocomplexes vigorously suppress the growth of tumor volumes comparing to lipo group after five weeks' treatment. These results demonstrate the potential of the pH/ATP-activated nanocarriers for AIPC gene therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b21707 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!