Objectives: Pancreatic ductal adenocarcinoma (PDAC) is a very aggressive tumor with a very low 5-year survival rate of 8%. The aims of this study are to determine reference values and physiologic confounders in healthy pancreas and to assess the diagnostic accuracy of ultrasound time-harmonic elastography (THE) in the detection of PDAC.
Materials And Methods: From March 2017 through May 2019, a total of 54 study participants with healthy pancreas (n = 33, CTR) or PDAC (n = 21) were prospectively enrolled. Repeatability of THE was tested in a CTR subgroup (n = 5) undergoing repeat measurement on 4 different days. Interobserver variability was analyzed in 10 healthy volunteers. Age-matched and sex-matched subgroups of CTR (n = 13) and PDAC (n = 13) were compared. In participants with histopathologically proven PDAC, measurements were performed separately in tumorous (PDAC-T) and nontumorous pancreatic tissue (PDAC-NT). Diagnostic performance of pancreatic THE was assessed by receiver operating characteristic curve analysis.
Results: Time-harmonic elastography was highly repeatable (intraclass correlation coefficient, 0.99), and interobserver agreement was excellent (intraclass correlation coefficient, 0.97). Shear wave speed (SWS) of PDAC-T (mean [95% confidence interval] in meters per second, 1.88 ± 0.07 [1.84-1.92]) was higher than SWS of CTR (1.63 ± 0.04 [1.60-1.66], P < 0.001) and PDAC-NT (1.59 ± 0.03 [1.57-1.61], P < 0.001). The exploratory diagnostic performance of THE in separating PDAC-T was excellent (area under the receiver operating characteristic curve, 1.0). Tumorous pancreatic ductal adenocarcinoma was distinguished from CTR and PDAC-NT with cutoff values of 1.73 m/s and 1.70 m/s, respectively.
Conclusions: Pancreatic ultrasound THE has high repeatability and provides excellent imaging contrast based on SWS, allowing detection of PDAC without overlap to nontumorous pancreatic tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/RLI.0000000000000638 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Radiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany.
Rapid mapping of the mechanical properties of soft biological tissues from light microscopy to macroscopic imaging can transform fundamental biophysical research by providing clinical biomarkers to complement in vivo elastography. This work introduces superfast optical multifrequency time-harmonic elastography (OMTHE) to remotely encode surface and subsurface shear wave fields for generating maps of tissue stiffness with unprecedented detail resolution. OMTHE rigorously exploits the space-time propagation characteristics of multifrequency time-harmonic waves to address current limitations of biomechanical imaging and elastography.
View Article and Find Full Text PDFJ Am Soc Echocardiogr
December 2024
Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany. Electronic address:
Objectives: Heart failure is an increasing global health problem. Approximately 50% of patients with heart failure have heart failure with preserved ejection fraction (HFpEF) and concomitant diastolic dysfunction (DD), in part caused by increased myocardial stiffness not detectable by standard echocardiography. While elastography can map tissue stiffness, cardiac applications are currently limited, especially in patients with a higher body mass index.
View Article and Find Full Text PDFSci Rep
November 2024
Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
Magnetic resonance elastography (MRE) is a noninvasive brain stiffness mapping method. Ultrasound-based transtemporal time-harmonic elastography (THE) is emerging as a cost-effective, fast alternative that has potential applications for bedside monitoring of intracranial pressure. We aim to investigate the accuracy of THE in comparison to MRE performed in the brain.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Institute of Medical Informatics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany. Electronic address:
Elastography is an emerging diagnostic technique that uses conventional imaging modalities such as sonography or magnetic resonance imaging to quantify tissue stiffness. However, different elastography methods provide different stiffness values, which require calibration using well-characterized phantoms or tissue samples. A comprehensive, fast, and cost-effective elastography technique for phantoms or tissue samples is still lacking.
View Article and Find Full Text PDFZ Med Phys
March 2024
Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany. Electronic address:
Time-harmonic elastography (THE) is an emerging ultrasound imaging technique that allows full-field mapping of the stiffness of deep biological tissues. THE's unique ability to rapidly capture stiffness in multiple tissues has never been applied for imaging skeletal muscle. Therefore, we addressed the lack of data on temporal changes in skeletal muscle stiffness while simultaneously covering stiffness of different muscles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!