Survival genes expression analysis following ionizing radiation to LiCl treated KG1a cells.

Int J Radiat Biol

Division of Stem Cell & Gene Therapy Research, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Delhi, India.

Published: May 2020

Lithium chloride (LiCl) is clinically used for manic disorders. Its role has been shown in improving cell survival by decreasing Bax and p53 expression and increasing Bcl-2 concentration in the cell. This potential of LiCl is responsible for reducing irradiated cell death. In this study, we have explored the role of LiCl as a radioprotectant affecting survival genes. To find out the cellular response upon LiCl pretreatment to radiation-exposed KG1a cells; viability, clonogenic assay and microarray studies were performed. This was followed by the detection of transcription factor binding motif in coregulated genes. These results were confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and chromatin immunoprecipitation (CHIP). LiCl improved irradiated KG1a cell survival and its clonogenicity at 2 mM concentration (clinically used). Microarray data analysis showed differential expression of cell-protecting genes playing an important role in apoptosis, cell cycle, adhesion and inflammation, etc. The coregulation analysis revealed genes involved in bile acid biosynthesis were also affected by LiCl treatment, these genes are likely to be responsible for radiation-induced gastrointestinal (GI) syndrome through bile production. This is the first study with respect to global genetic expression upon LiCl treatment to radiation-exposed cells. Our results suggest considering repurposing of LiCl as a protective agent for radiation injury.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2020.1721592DOI Listing

Publication Analysis

Top Keywords

licl
9
survival genes
8
kg1a cells
8
cell survival
8
licl treatment
8
cell
5
genes
5
survival
4
expression
4
genes expression
4

Similar Publications

Background And Objectives: Breast cancers (BCs) of patients with paraneoplastic neurologic syndromes and anti-Yo antibodies (Yo-PNS) overexpress human epidermal growth factor receptor 2 (HER2) and display genetic alterations and overexpression of the Yo-onconeural antigens. They are infiltrated by an unusual proportion of B cells. We investigated whether these features were also observed in patients with PNS and anti-Ri antibodies (Ri-PNS).

View Article and Find Full Text PDF

Solid-State Nanopore Real-Time Assay for Monitoring Cas9 Endonuclease Reactivity.

ACS Nano

January 2025

Bragg Centre for Materials Research, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K.

The field of nanopore sensing is now moving beyond nucleic acid sequencing. An exciting avenue is the use of nanopore platforms for the monitoring of biochemical reactions. Biological nanopores have been used for this application, but solid-state nanopore approaches have lagged.

View Article and Find Full Text PDF

Although lithium (LIT) therapy is key in managing bipolar disorder long-term, prolonged use significantly contributes to acquired Nephrogenic Diabetes Insipidus (NDI). This study examined whether combining Silymarin (SIL) with Vitamin C (Vit C) enhances protection against lithium-induced nephrotoxicity in rats, comparing their individual antioxidant effects as well. Rats subjected to Li exposure were provided with a standard commercial diet supplemented with 80 mmol LiCl per kilogram for 28 days.

View Article and Find Full Text PDF

Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp)-C(sp) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(-cyanocarboxamidine) (PyBCam)-ligated nickel catalysts.

View Article and Find Full Text PDF

Pseudorabies virus (PRV) is one of the highly contagious pathogens causing significant economic losses to the swine industry worldwide. More importantly, PRV is becoming a potential "life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2019. Previously we found that the canonical Wnt/β-catenin pathway facilitates PRV proliferation, while the underlying mechanism remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!