While the combined presence of global climate change and nanosized plastic particle (i.e., nanoplastic) pollution is clear, the potential for interactions between climate-change-shifting environmental parameters and nanoplastics is largely unknown. Here, we aim to understand how nanoplastics will affect species in concert with climate change in freshwater ecosystems. We utilized a high-throughput full-factorial experimental system and the model photosynthetic microorganism to capture the complexity of interacting environmental stressors, including CO, temperature, light, and nanoplastics. Under a massive number of conditions (2000+), we consistently found concentration-dependent inhibition of algal growth in the presence of polystyrene nanoparticles, highlighting a threat to primary productivity in aquatic ecosystems. Our high-treatment experiment also identified crucial interactions between nanoplastics and climate change. We found that relatively low temperature and ambient CO exacerbated damage induced by nanoplastics, while elevated CO and warmer temperatures reflecting climate change scenarios somewhat attenuated nanoplastic toxicity. Further, we revealed that nanoplastics may modulate light responses, implying that risks of nanoplastic pollution may also depend on local irradiation conditions. Our study highlights the coupled impacts of nanoplastics and climate change, as well as the value of full-factorial screening in predicting biological responses to multifaceted global change.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b07040DOI Listing

Publication Analysis

Top Keywords

climate change
24
biological responses
8
nanoplastics
8
nanoplastic pollution
8
nanoplastics climate
8
change
7
climate
6
responses climate
4
change nanoplastics
4
nanoplastics altered
4

Similar Publications

Effects of combinations of the essential oils trans-anethole, thymol and carvacrol against larvae of the screwworm fly Cochliomyia hominivorax in vitro.

Vet Parasitol

January 2025

Laboratório de Quimioterapia Experimental em Parasitologia Veterinária (LQEPV), Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil; Departamento de Parasitologia Animal, Instituto de Medicina Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil.

This study investigated the combined effect of trans-anethole, carvacrol and thymol on third-instar larvae of C. hominivorax. For this experiment, third-stage larvae of C.

View Article and Find Full Text PDF

Climate change is rapidly altering Arctic marine environments, leading to warmer waters, increased river discharge, and accelerated sea ice melt. The Hudson Bay Marine System (HBMS) experiences the fastest rate of sea ice loss in the Canadian North resulting in a prolonged open water season during the summer months. We examined microbial communities in the Hudson Strait using high throughput 16s rRNA gene sequencing during the peak of summer, in which the bay was almost completely ice-free, and air temperatures were high.

View Article and Find Full Text PDF

Pathways to achieving net zero carbon emissions commonly involve deploying reforestation, afforestation, and bioenergy crops across millions of hectares of land. It is often assumed that by helping to mitigate climate change, these strategies indirectly benefit biodiversity. Here, we modeled the climate and habitat requirements of 14,234 vertebrate species and show that the impact of these strategies on species' habitat area tends not to arise through climate mitigation, but rather through habitat conversion.

View Article and Find Full Text PDF

Role of micronutrients in production and reproduction of farm animals under climate change scenario.

Trop Anim Health Prod

January 2025

School of Molecular Diagnostics, Prophylaxis, and Nanobiotechnology, ICAR- Indian Institute of Agricultural Biotechnology, Garkhtanga, Ranchi, 834003, Jharkhand, India.

Climate change poses significant challenges to livestock production worldwide. Wherein, it affects communities in developing nations primarily dependent on agriculture and animal husbandry. Its direct and indirect deleterious effects on agriculture and animal husbandry includes aberrant changes in weather patterns resulting in disturbed homeorhetic mechanism of livestock vis a vis indirectly affecting nutrient composition of feed and fodder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!