Lithium-sulfur (Li-S) batteries severely suffer from the shuttling of soluble polysulfides intermediates, insulation of sulfur and lithium sulfides, and volumetric expansion of sulfur electrodes, which result in the fast capacity decay and low utilization of active materials. To overcome these issues, a new type of porous phthalazinone-based covalent triazine frameworks (P-CTFs) with inherent N and O atoms has been in situ grown onto conductive reduced graphene oxide (rGO) by the sulfur-mediated cyclization of dinitrile monomers to afford the S/P-CTF@rGO hybrids. The well-designed structure endows the S/P-CTF@rGO composites with several features for enhanced Li-S batteries: (i) the nanoporous structure can spatially trap the sulfur species within the P-CTFs; (ii) the covalent binding of sulfur and polar groups of phthalazinone and triazine in P-CTFs exhibits strong chemical attachment and adsorption with polysulfides and further limits the diffusion of polysulfides; (iii) the conductive rGO and semiconductive P-CTFs help faster electronic transportation and accelerate the electrochemical process. Therefore, the S/P-CTF@rGO cathodes show greatly enhanced electrochemical performances with a high initial specific capacity of 1130 mAh g at 0.5C and a good capacity retention of 81.4% after 500 cycles, indicating only 0.04% degradation per cycle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b21481 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Harbin Institute of Technology, School of Chemistry and Chemical Engineering, No. 92, West Dazhi Street, 150001, Harbin, CHINA.
Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.
View Article and Find Full Text PDFSci Rep
January 2025
Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, Zhejiang, China.
Electrocatalytic materials with dual functions of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have received increasing attention in the field of zinc-air batteries (ZABs) research. In this study, bifunctional CoNC@NCXS catalysts were prepared by anchoring Co and N co-doped CoNC on N-doped carbon xerogel sphere (NCXS) based on the spatially confined domain effect and in-situ doping technique. CoNC@NCXS exhibited excellent ORR/OER activity in alkaline electrolytes with the ORR onset potential of 0.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.
Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University 197 Inje-ro Gimhae Gyeongnam-do 50834 Republic of Korea
Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Current lithium batteries experience significant performance degradation under extreme temperature conditions, both high and low. Traditional wide-temperature electrolyte designs typically addressed these challenges by manipulating the solvation sheath and selecting solvents with extreme melting/boiling points. However, these solvent-mediated solutions, while effective at one temperature extreme, invariably fail at the opposite end due to the inherent difficulties in maintaining solvent stability across wide temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!