As the lighting technology evolves, the need for violet light-emitting diodes (LEDs) is growing for high color rendering index lighting. The present technology for violet LEDs is based on the high-cost GaN materials and metal-organic chemical vapor deposition process; therefore, there have recently been intensive studies on developing low-cost alternative materials and processes. In this study, for the first time, we demonstrated violet LEDs based on low-cost materials and processes using a p-CuI thin film/n-MgZnO quantum dot (QD) heterojunction. The p-CuI thin film layer was prepared by an iodination process of Cu films, and the n-MgZnO layer was deposited by spin-coating presynthesized n-MgZnO QDs. To maximize the performance of the violet LED, an optimizing process was performed for each layer of p- and n-type materials. The optimized LED with 1 × 1 mm-area pixel fabricated using the p-CuI thin film at the iodination temperature of 15 °C and the n-MgZnO QDs at the Mg alloying concentration of 2.7 at. % exhibited the strongest violet emissions at 6 V.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b18507 | DOI Listing |
ACS Appl Mater Interfaces
February 2020
Department of Materials Science and Engineering , Yonsei University, 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea.
As the lighting technology evolves, the need for violet light-emitting diodes (LEDs) is growing for high color rendering index lighting. The present technology for violet LEDs is based on the high-cost GaN materials and metal-organic chemical vapor deposition process; therefore, there have recently been intensive studies on developing low-cost alternative materials and processes. In this study, for the first time, we demonstrated violet LEDs based on low-cost materials and processes using a p-CuI thin film/n-MgZnO quantum dot (QD) heterojunction.
View Article and Find Full Text PDFSci Rep
February 2016
Institut für Experimentelle Physik II, Universität Leipzig, Leipzig, 04103, Germany.
CuI is a p-type transparent conductive semiconductor with unique optoelectronic properties, including wide band gap (3.1 eV), high hole mobility (>40 cm(2)V(-1)s(-1) in bulk), and large room-temperature exciton binding energy (62 meV). The difficulty in epitaxy of CuI is the main obstacle for its application in advanced solid-state electronic devices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!