Peptides play an important role in intermolecular interactions and are frequent analytes in diagnostic assays, also as unstructured, linear epitopes in whole proteins. Yet, due to the many different sequence possibilities even for short peptides, classical selection of binding proteins from a library, one at a time, is not scalable to proteomes. However, moving away from selection to a rational assembly of preselected modules binding to predefined linear epitopes would split the problem into smaller parts. These modules could then be reassembled in any desired order to bind to, in principle, arbitrary sequences, thereby circumventing any new rounds of selection. Designed Armadillo repeat proteins (dArmRPs) are modular, and they do bind elongated peptides in a modular way. Their consensus sequence carries pockets that prefer arginine and lysine. In our quest to select pockets for all amino acid side chains, we had discovered that repetitive sequences can lead to register shifts and peptide flipping during selections from libraries, hindering the selection of new binding specificities. To solve this problem, we now created an orthogonal binding specificity by a combination of grafting from β-catenin, computational design and mutual optimization of the pocket and the bound peptide. We have confirmed the design and the desired interactions by X-ray structure determination. Furthermore, we could confirm the absence of sliding in solution by a single-molecule Förster resonance energy transfer. The new pocket could be moved from the N-terminus of the protein to the middle, retaining its properties, further underlining the modularity of the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschembio.9b00928 | DOI Listing |
Alzheimers Dement
December 2024
University of California Irvine, Irvine, CA, USA.
Background: Anti- Aβ monoclonal antibodies are the first FDA-approved treatments for AD that slow cognitive decline and lower Aβ plaques. Our goal is to identify the epitope specificities of antibodies in human blood that are associated with AD and NC and determine the predicted protein targets of these antibodies.
Method: 101 AD (MMSE < 27) and 98 NC (MMSE > 27) serum samples were obtained from the UCI tissue repository.
Alzheimers Dement
December 2024
Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Background: An important hallmark of Alzheimer's Disease (AD) is the presence of neurofibrillary tangles (NFTs) composed of phosphorylated tau, which are commonly assessed using AT8 immunostains. Identifying additional markers to characterize the spectrum of NFT pathology is crucial for advancing our understanding and diagnosis of AD. This study introduces new potential markers to differentiate between tangles and healthy neurons.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
Background: Limbic predominant age-related TDP-43 encephalopathy (LATE) is a common co-pathology in Alzheimer's disease (AD) and is associated with advanced cognitive impairment and severe atrophy in limbic regions. In AD, various maturation stages for tau neurofibrillary tangles have been characterized and can be selectively marked by monoclonal tau antibodies, providing insight into disease progression. Indeed, AD tau pathology progresses from an early "paperclip" conformation, marked by the MC1 epitope to a C-terminally truncated form of tau, marked by MN423 epitope.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands, Maastricht, Netherlands; Gordon Center for Medical Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA.
Background: The brainstem locus coeruleus (LC) is among the first sites of Alzheimer's disease (AD) pathology, accruing hyperphosphorylated tau as early as in young adulthood. Animal studies indicate that the LC is crucially involved in sleep-wake regulation, a recently established factor contributing to AD-related pathophysiological processes. However, the associations between LC integrity and sleep-wake phenotypes in the context of AD pathology remain poorly characterized in humans.
View Article and Find Full Text PDFJ Immunol Methods
December 2024
Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoon-Ose, Yangzhou University, Yangzhou, China. Electronic address:
Background: Bovine IgG1 Fc receptor (boFcγRI) is a homologue to human FcγRI (CD64) that has three extracellular Ig-like domains and can bind bovine IgG1 with high affinity. Identification of the linear epitope for Fc-binding on boFcγRI provides new insights for the IgG-Fcγ interaction and FcγR-targeting drugs development.
Methods: The boFcγRI molecules were expressed on cell surface of the boFcγRI -transfected COS-7 cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!