Species interactions have a spatiotemporal component driven by environmental cues, which if altered by climate change can drive shifts in community dynamics. There is insufficient understanding of the precise time windows during which inter-annual variation in weather drives phenological shifts and the consequences for mismatches between interacting species and resultant population dynamics-particularly for insects. We use a 20 year study on a tri-trophic system: sycamore Acer pseudoplatanus, two associated aphid species Drepanosiphum platanoidis and Periphyllus testudinaceus and their hymenopteran parasitoids. Using a sliding window approach, we assess climatic drivers of phenology in all three trophic levels. We quantify the magnitude of resultant trophic mismatches between aphids and their plant hosts and parasitoids, and then model the impacts of these mismatches, direct weather effects and density dependence on local-scale aphid population dynamics. Warmer temperatures in mid-March to late-April were associated with advanced sycamore budburst, parasitoid attack and (marginally) D. platanoidis emergence. The precise time window during which spring weather advances phenology varies considerably across each species. Crucially, warmer temperatures in late winter delayed the emergence of both aphid species. Seasonal variation in warming rates thus generates marked shifts in the relative timing of spring events across trophic levels and mismatches in the phenology of interacting species. Despite this, we found no evidence that aphid population growth rates were adversely impacted by the magnitude of mismatch with their host plants or parasitoids, or direct impacts of temperature and precipitation. Strong density dependence effects occurred in both aphid species and probably buffered populations, through density-dependent compensation, from adverse impacts of the marked inter-annual climatic variation that occurred during the study period. These findings explain the resilience of aphid populations to climate change and uncover a key mechanism, warmer winter temperatures delaying insect phenology, by which climate change drives asynchronous shifts between interacting species.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15015DOI Listing

Publication Analysis

Top Keywords

aphid population
12
climate change
12
interacting species
12
aphid species
12
population dynamics
8
species
8
precise time
8
trophic levels
8
density dependence
8
warmer temperatures
8

Similar Publications

Cyclaniliprole, a type of the third-generation anthranilic diamide insecticide, was mainly used for management of various pests. Myzus persicae (Hemiptera: Aphididae), known as the peach-potato aphid, is an economically essential pest with worldwide distribution. However, the risk assessment of cyclaniliprole in M.

View Article and Find Full Text PDF

Natural Enemies Acquire More Prey Aphids from Hormone-Treated Insect-Attracting Plants.

Plants (Basel)

January 2025

Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

Exogenous plant hormones regulate the agronomic and physiological performance of plants and thus can influence the abundance of insect groups. We surveyed the arthropods on flowering plants and found that the abundance of natural enemies and in the plots treated with salicylic acid (SA) and indole acetic acid (IAA) was significantly increased compared with those in the clean water (control) plots. Then, we investigated the effects of spraying SA, IAA, and clean water on the population parameters of reared on Our results from the age-stage, two-sex life table analysis revealed a significantly shorter pre-adult duration for aphids reared on SA-treated compared to those reared on the other two treatments.

View Article and Find Full Text PDF

Comparison of Fecundity and Gall-Forming of the Horned-Gall Aphid, (Hemiptera: Aphididae) from Different Populations.

Insects

January 2025

Yunnan Key Laboratory of Breeding and Utilization of Resource Insects, Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China.

The horned-gall aphid, , is the most economically valuable Chinese gallnut aphid species, playing a decisive role in the production of Chinese gallnuts. The method of cultivating the gallnut species with artificial moss and increasing the yield of gallnuts after inoculation has been applied in the main producing areas of Chinese gallnuts. However, it is still unclear whether artificial cultivation affects the fecundity and gall-forming effect of .

View Article and Find Full Text PDF

An Evaluation of the Effects of Delayed Parasitism on Daily and Lifetime Fecundity of Haliday.

Insects

December 2024

Dipartimento di Scienze Agrarie, Forestali, Alimentari ed Ambientali (DAFE), Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy.

The study of parasitoid reproductive behaviour is crucial to understanding how parasitoids influence host population dynamics, and the strategies used by parasitoids to maximize their reproductive success. Studying how the parasitoid optimizes its reproductive resources is important as it provides information to improve the efficiency of a biological control programme. Many studies have been carried out on to assess the foraging behaviour of the parasitoid, but how the age of the parasitoid affects its foraging behaviour is still poorly understood.

View Article and Find Full Text PDF

Evaluation of the biocontrol potential of Episyrphus balteatus (Diptera: Syrphidae) on wheat aphids in northern China.

J Econ Entomol

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Marmalada hoverfly, Episyrphus balteatus De Geer (Diptera: Syrphidae), is a cosmopolitan fly species providing pest control and pollination services. As wheat aphids cause significant losses to global wheat production, a systematic evaluation of the predatory potential and biocontrol service functions of E. balteatus in wheat ecosystems was undertaken.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!