Voltammetric analysis is often dependent on pH and on the addition of buffer reagents to optimise the analytical procedure. This approach is not always possible for in situ analytical measurements, for example when studying biological fluids or ingredients in food. Therefore, a method is proposed herein, which employs a working electrode to do both, that is, to locally modulate the pH value and to measure the analytical response. As a model system, thiamine (vitamin B1) is detected in aqueous KCl with a pH modulation brought about with negative potentials applied to the working electrode. Interferences from ascorbic acid and uric acid are considered. Exploratory data are presented and methods for improving the detection limit are suggested. Their potential for applications in electroanalysis (and in a broader range of processes) is discussed and the detection of thiamine in rice is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9an02186hDOI Listing

Publication Analysis

Top Keywords

working electrode
8
voltammetric detection
4
detection vitamin
4
vitamin thiamine
4
thiamine neutral
4
neutral solution
4
solution glassy
4
glassy carbon
4
carbon electrode
4
electrode situ
4

Similar Publications

Bimetallic metal-organic frameworks as electrode modifiers for enhanced electrochemical sensing of chloramphenicol.

Mikrochim Acta

January 2025

Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, 430056, China.

An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with  their monometallic counterparts due to the strong synergistic effect between bimetals.

View Article and Find Full Text PDF

The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).

View Article and Find Full Text PDF

A Redox-Active Copper Complex for Orthogonal Detection of Homocysteine Involving Fluorescence and Electrochemical Techniques.

Small

January 2025

Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.

The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.

View Article and Find Full Text PDF

Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.

View Article and Find Full Text PDF

In this work, we successfully prepared four POM-based organic-inorganic hybrids, namely, [(CHN)(CHN)][PMoO] (1), [(CHN)(CHN)][PMoO] (2), [(CHN)][PMoO]·4HO (3), and [(CHN)][PMoO] (4) (where CHN = pyridine, CHN = pyrazine, CHN = 2,7-diamino-1,3,4,6,8,9-hexaazaspiro[4.4] nonane, and CHN = 3-amino-1,2,4-triazole), using a hydrothermal method. Compounds 1 and 2 exhibited a lamellar three-dimensional structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!