Accurate monitoring of multiphase displacement processes is essential for the development, validation and benchmarking of numerical models used for reservoir simulation and for asset characterization. Here we demonstrate the first application of a chemically-selective 3D magnetic resonance imaging (MRI) technique which provides high-temporal resolution, quantitative, spatially resolved information of oil and water saturations during a dynamic imbibition core flood experiment in an Estaillades carbonate rock. Firstly, the relative saturations of dodecane ( and water ( , as determined from the MRI measurements, have been benchmarked against those obtained from nuclear magnetic resonance (NMR) spectroscopy and volumetric analysis of the core flood effluent. Excellent agreement between both the NMR and MRI determinations of and was obtained. These values were in agreement to 4 and 9% of the values determined by volumetric analysis, with absolute errors in the measurement of saturation determined by NMR and MRI being 0.04 or less over the range of relative saturations investigated. The chemically-selective 3D MRI method was subsequently applied to monitor the displacement of dodecane in the core plug sample by water under continuous flow conditions at an interstitial velocity of ( . During the core flood, independent images of water and oil distributions within the rock core plug at a spatial resolution of were acquired on a timescale of 16 min per image. Using this technique the spatial and temporal dynamics of the displacement process have been monitored. This MRI technique will provide insights to structure-transport relationships associated with multiphase displacement processes in complex porous materials, such as those encountered in petrophysics research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6954023 | PMC |
http://dx.doi.org/10.1007/s11242-017-0945-6 | DOI Listing |
Eur Heart J Imaging Methods Pract
January 2025
Department of Radiology, University of Michigan, 1500 E Medical Center Drive, CVC 5581, Ann Arbor, MI 48109, USA.
Aims: Aortic wall stiffening in ascending thoracic aortic aneurysm (aTAA) is common. However, the spatial and temporal relationships between stiffness, aortic size, and growth in aTAA remain unclear.
Methods And Results: In this single-centre retrospective study, we utilized vascular deformation mapping to extract multi-directional aortic motion, aortic distensibility, and aortic growth in a multi-planar fashion from multi-phasic ECG-gated computed tomography angiograms.
Heliyon
January 2025
Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt.
This investigation represents porothermoelastic asphalt material with thermal shock due to multi-phase lag model of thermoelasticity. By applying proper boundary conditions to the normal mode approach, we were able to achieve the precise solution. The graphs provide numerical results for the physical quantities supplied in physical domain.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department Water Resources and Drinking Water, Eawag Swiss Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland.
Understanding the interaction between multiphase flow and reactive transport in porous media is critical for many environmental and industrial applications. When a nonwetting immiscible phase is present within the pore space, it can remain immobile, which we call unsaturated flow, or move, resulting in multiphase flow. Previous studies under unsaturated flow conditions have shown that, for a given flow rate, the product of a mixing-driven reaction increases as wetting phase saturation decreases.
View Article and Find Full Text PDFPLoS One
October 2024
Wildlife Institute of India, Dehradun, Uttarakhand, India.
Magn Reson Med
March 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
Purposes: To enhance the functional capability of MRI, this study aims to develop a novel MR elastography (MRE) sequence that achieves rapid acquisition without distortion artifacts.
Methods: A displacement-encoded stimulated echo (DENSE) with multiphase acquisition scheme was used to capture wave images. A center-out golden-angle stack-of-stars sampling pattern was introduced for improved SNR and data incoherence.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!