A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanisms of effective gold shell on FeO core nanoparticles formation using sonochemistry method. | LitMetric

Mechanisms of effective gold shell on FeO core nanoparticles formation using sonochemistry method.

Ultrason Sonochem

Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia; Nano-Optoelectronics Research and Technology Lab (NORLab), School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia.

Published: June 2020

Sonochemical synthesis (sonochemistry) is one of the most effective techniques of breaking down large clusters of nanoparticles (NPs) into smaller clusters or even individual NPs, which ensures their dispersibility (stability) in a solution over a long duration. This paper demonstrates the potential of sonochemistry becoming a valuable tool for the deposition of gold (Au) shell on iron oxide nanoparticles (FeO NPs) by explaining the underlying complex processes that control the deposition mechanism. This review summarizes the principles of the sonochemistry method and highlights the resulting phenomenon of acoustic cavitation and its associated physical, chemical and thermal effects. The effect of sonochemistry on the deposition of Au NPs on the FeO surface of various sizes is presented and discussed. A Vibra-Cell ultrasonic solid horn with tip size, frequency, power output of ½ inch, 20 kHz and 750 W respectively was used in core@shell synthesis. The sonochemical process was shown to affect the surface and structure of FeO NPs via acoustic cavitation, which prevents the agglomeration of clusters in a solution, resulting in a more stable dispersion. Deciphering the mechanism that governs the formation of Au shell on FeO core NPs has emphasized the potential of sonication in enhancing the chemical activity in solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2019.104865DOI Listing

Publication Analysis

Top Keywords

gold shell
8
shell feo
8
feo core
8
sonochemistry method
8
feo nps
8
acoustic cavitation
8
nps
6
feo
5
sonochemistry
5
mechanisms effective
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!