The objective of this study was to determine how individuals poststroke respond to user-driven treadmill (UDTM) controlin terms ofwalking speeds, peak anterior ground reaction forces (AGRF), peak posterior ground reaction forces (PGRF), and trailing limb angles (TLA). Twenty individuals with chronic stroke walked overground during a 10-meter walk test to determine their self-selected (SS) speeds before walking on a treadmill in its fixed-speed (FSTM) and UDTM control modes at their SS and fastest comfortable (Fast) speeds. Paired t-tests were used to compare the walking speeds, peak AGRF, peak PGRF, and TLA among test conditions (α = 0.05). Participants selected similar SS (p > 0.05) and faster Fast walking speeds (p < 0.05) with the UDTM control compared to the FSTM control. There were no changes in their peak AGRF or PGRF for either limb or speed between UDTM and FSTM conditions (p > 0.05). Individuals used greater paretic TLA at SS speeds with UDTM control (p < 0.05). There was no difference in the AGRF required at Fast speeds with FSTM and UDTM control even though participants selected faster speeds with UDTM control. In work with young, healthy adults, we found that the treadmill control condition did not affect the amount of forward propulsion needed. Therefore, it is likely that when walking with UDTM control, individuals poststroke adjust their posture to make better use of their forward propulsion. This means they can reach faster walking speeds without increasing their push-off forces. Future work should assess how to most effectively prescribe UDTM control for gait training programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7104554 | PMC |
http://dx.doi.org/10.1016/j.jbiomech.2020.109643 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!