In plants, macroautophagy/autophagy has mainly been associated with stress-related processes but how it impacts normal physiological and developmental processes remains largely unexplored. Pollen germination is the critical first step toward fertilization in flowering plants. It is metabolically demanding and relies on high levels of cytoplasmic reorganization activities to support a dramatic morphological transformation that underlies the development of a pollen tube as the conduit to deliver sperm for fertilization. The role of autophagy in this process remains unclear. Here we provide evidence that pollen germination is accompanied by elevated autophagic activity and successful pollen tube emergence depends on autophagy-mediated cytoplasmic deletion. Genetic and cytological experiments demonstrate that inhibition of autophagy prevents pollen germination while induces the persistence of a layer of undegraded cytoplasm at the germination aperture. Together, these results unveil a novel compartmentalized autophagy. Furthermore, high-throughput comparative lipidomic analyses show that suppressed autophagy-induced inhibition of pollen germination is accompanied by altered profiles of stored and signaling lipids. Proteomic analyses reveal that autophagy likely exert its role in pollen germination via downstream mitochondria-related pathways. These findings reveal a critical role for autophagy in initiating pollen germination and provide evidences for compartmental cytoplasmic deletion being crucial for male fertility. : 3-MA: 3-methyladenine; ATG: autophagy-related gene; Cer: ceramide; CL: cardiolipin; Con A: concanamycin A; DAG: diradylglycerol; GO: gene ontology; HAG: hour after germination; LC-MS: liquid chromatography-mass spectrometry; MAG: min after germination; MDC: monodansylcadaverine; PE: phosphatidylethanolamine; PI: phosphatidylinositol; PLD: phospholipase D; PtdIns3K: phosphatidylinositol 3-kinase; RT-qPCR: quantitative real-time reverse transcription PCR; TAG: triradylglycerol; TEM: transmission electron microscopy; TMT: tandem mass tagging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751669PMC
http://dx.doi.org/10.1080/15548627.2020.1719722DOI Listing

Publication Analysis

Top Keywords

pollen germination
28
cytoplasmic deletion
12
germination
10
pollen
9
compartmental cytoplasmic
8
male fertility
8
pollen tube
8
role autophagy
8
germination accompanied
8
autophagy
5

Similar Publications

The success of pollen-pistil interaction in Mauritia flexuosa (buriti), a palm adapted to the humid ecosystems, 'veredas', within the Cerrado, is influenced by intrinsic and environmental factors. Its supra-annual flowering, dioecy, and adverse climate conditions pose challenges for fertilization, therefore information on floral biology is essential. This study aimed to ascertain stigma receptivity, and elucidate structural, cytochemical, and ultrastructural aspects of the pollen-pistil relationship.

View Article and Find Full Text PDF

ALBA3 maintains male fertility under heat stress in plants.

J Integr Plant Biol

January 2025

School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.

Heat stress (HS) at the reproductive stage detrimentally affects crop yields and seed quality. However, the molecular mechanisms that protect reproductive processes in plants under HS remain largely unknown. Here, we report that Acetylation Lowers Binding Affinity 3 (ALBA3) is crucial for safeguarding male fertility against HS in Arabidopsis.

View Article and Find Full Text PDF

Pollen tube-expressed RUPO forms a complex with OsMTD2 and OsRALF17 and OsRALF19 peptides in rice (Oryza sativa).

J Plant Physiol

January 2025

Department of Life Science and Environmental Biochemistry, and Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea. Electronic address:

Pollen tubes are crucial for angiosperm plants, as they deliver sperm gametes for the essential process of double fertilization. Understanding the molecular mechanisms behind pollen tube germination and growth is critical; however, these processes remain partially elucidated in monocot cereal crops. Rapid Alkalinization Factor (RALF), a small peptide of about 5 kDa, binds to the CrRLK1L receptor and plays a role in various plant physiological processes, including reproduction and tip growth.

View Article and Find Full Text PDF

Pollen and Stigma Morphology, Pollen Viability and Stigma Receptivity of Wittmackia Species (Bromeliaceae) by Light, Fluorescence and Scanning Electron Microscopy.

Microsc Res Tech

January 2025

Programa de Pós-graduação Em Recursos Genéticos Vegetais, Universidade Federal Do Recôncavo da Bahia (UFRB), Programa de Pós-graduação Em Recursos Genéticos Vegetais, Cruz das Almas, Bahia, Brazil.

The genus Wittmackia has 44 species distributed in two centers of diversity: the Brazilian clade and the Caribbean clade. The Brazilian clade includes 29 species, with geographic distribution concentrated in the Northeast of Brazil. This study reports the morphology, ultrastructure, pollen viability and stigma receptivity by different microscopy techniques of 23 species of the genus Wittmackia endemic to Brazil and occurring in Atlantic Forest areas.

View Article and Find Full Text PDF

Extracellular AMP Inhibits Pollen Tube Growth in via Disrupted Calcium Gradient and Disorganized Microfilaments.

Plants (Basel)

December 2024

State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.

Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!