Population Genetic Diversity and Structure of Thrips tabaci (Thysanoptera: Thripidae) on Allium Hosts in China, Inferred From Mitochondrial COI Gene Sequences.

J Econ Entomol

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.

Published: June 2020

Thrips tabaci Lindeman is a widely distributed agricultural pest China, which causes damage to many vegetables and cash crops. However, the population genetic variation of this pest in China remains unknown. In this study, the genetic diversity and structure of T. tabaci on Allium hosts collected from 12 geographic locations were evaluated based on mitochondrial cytochrome oxidase subunit I (COI) sequences. Six haplotypes were identified in 247 T. tabaci individuals from 12 geographic locations. All the identified T. tabaci haplotypes were thelytokous populations. The strongest genetic differentiation and relatively low gene flow were found between QHXN and other locations, which might be due to geographic barriers, such as high altitude Qinghai-Tibet Plateau. The lowest genetic variation was found in eastern and southern regions, with only one haplotype identified. The Mantel test showed no correlation between genetic distance and geographical distances. High gene flow between locations with substantial geographical distances suggested that migration of T. tabaci across China might be facilitated through human activities. The results of demographic analysis suggested that T. tabaci in China have undergone a recent demographic expansion. The possible influences of T. tabaci invasion history and human activities on the current haplotype geographical distribution were interpreted and the implications of these findings for T. tabaci management were discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toaa001DOI Listing

Publication Analysis

Top Keywords

tabaci
9
population genetic
8
genetic diversity
8
diversity structure
8
thrips tabaci
8
allium hosts
8
pest china
8
genetic variation
8
geographic locations
8
gene flow
8

Similar Publications

A small RNA effector conserved in herbivore insects suppresses host plant defense by cross-kingdom gene silencing.

Mol Plant

January 2025

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:

Herbivore insects deploy salivary effectors to manipulate the defense of their host plants. However, it remains unclear whether small RNAs from insects function as effectors in regulating plant-insect interactions. Here, we report that a microRNA (miR29-b) found in the saliva of phloem-feeding whitefly (Bemisa tabaci) can transfer into the host plant phloem during feeding and fine-tune the defense response of tobacco (Nicotiana tabacum).

View Article and Find Full Text PDF

Transgenic tomato strategies targeting whitefly eggs from apoplastic or ovary-directed proteins.

BMC Plant Biol

December 2024

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Background: Transgenic plants expressing proteins that target the eggs of the ubiquitous plant pest Bemisia tabaci (whitefly) could be an effective insecticide strategy. Two approaches for protein delivery are assessed using the mCherry reporter gene in transgenic tomato plants, while accommodating autofluorescence in both the plant, phloem-feeding whitefly and pedicle-attached eggs.

Results: Both transgenic strategies were segregated to homozygous genotype using digital PCR.

View Article and Find Full Text PDF

Enhanced association of whitefly-begomovirus competence with plant-mediated mutualism.

Pest Manag Sci

December 2024

Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.

Background: Vector-borne viruses often manipulate plant defenses against insect vectors, thereby impacting vector population dynamics and in turn virus spread. However, the factors regulating the outcome of insect vector-virus-plant tripartite interactions, such as the feature of virus-vector combinations, are understudied.

Results: Using eight whitefly (Bemisia tabaci)-begomovirus combinations exhibiting different degrees of competence, namely virus transmission efficiency, we examined the association between whitefly-begomovirus competence and plant-mediated mutualism.

View Article and Find Full Text PDF

The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), is a polyphagous pest recognized as composed of several cryptic or sibling species. The Middle East-Asia Minor 1 (MEAM1) and the Mediterranean (MED) putative species are invasive and destructive worldwide. The MEAM1 is established throughout the United States, while MED is documented in 27 states.

View Article and Find Full Text PDF

Identification of CAP genes in finger lime (Citrus australasica) and their role in plant responses to abiotic and biotic stress.

Sci Rep

November 2024

Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA.

Article Synopsis
  • The study analyzes cysteine-rich secretory proteins and PR1-like genes in finger lime, focusing on their response to Huanglongbing disease.
  • CaCAP2 gene showed a dramatic increase in expression during infection compared to sweet orange, indicating its importance in the plant's defense.
  • The research also highlights the CAP2 gene's role in stress management and reveals genetic differences between finger lime and sweet orange that may affect their responses to environmental stresses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!