Background: The retinal pigment epithelium (RPE) has the potential to regenerate the entire neuroretina upon retinal injury in amphibians. In contrast, this regenerative capacity has been lost in mammals. The reprogramming of differentiated somatic cells into induced pluripotent stem cells (iPSCs) by viral transduction of exogenous stem cell factors has triggered a revolution in regenerative medicine. However, the risks of potential mutation(s) caused by random viral vector insertion in host genomes and tumor formation in recipients hamper its clinical application. One alternative is to immortalize adult stem cells with limited potential or to partially reprogram differentiated somatic cells into progenitor-like cells through non-integration protocols.
Methods: Sphere-induced RPE stem cells (iRPESCs) were generated from adult mouse RPE cells. Their stem cell functionality was studied in a mouse model of retinal degeneration. The molecular mechanism underlying the sphere-induced reprogramming was investigated using microarray and loss-of-function approaches.
Findings: We provide evidence that our sphere-induced reprogramming protocol can immortalize and transform mouse RPE cells into iRPESCs with dual potential to differentiate into cells that express either RPE or photoreceptor markers both in vitro and in vivo. When subretinally transplanted into mice with retinal degeneration, iRPESCs can integrate to the RPE and neuroretina, thereby delaying retinal degeneration in the model animals. Our molecular analyses indicate that the Hippo signaling pathway is important in iRPESC reprogramming.
Interpretation: The Hippo factor Yap1 is activated in the nuclei of cells at the borders of spheres. The factors Zeb1 and P300 downstream of the Hippo pathway are shown to bind to the promoters of the stemness genes Oct4, Klf4 and Sox2, thereby likely transactivate them to reprogram RPE cells into iRPESCs. FUND: National Natural Science Foundation of China and the National Institute of Health USA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6994567 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2019.102618 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
School of Graduate, Dalian Medical University, Dalian City, China.
Purpose: To investigate the effect of Ca2+/calmodulin-dependent protein kinase II (CAMKII) δ subtypes (CAMK2D) on sodium iodate (NaIO3)-induced retinal degeneration in mice.
Methods: Bioinformatics analysis and Western blot experiments were used to screen the significantly differentially expressed genes in age-related macular degeneration (AMD) disease. CAMK2D knockdown and overexpression models were constructed by lentivirus (LV) infection of adult retinal pigment epithelial cell line-19 (ARPE-19) cells in vitro.
Cell Death Dis
January 2025
Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Epithelial-to-mesenchymal transition (EMT) is a critical and complex process involved in normal embryonic development, tissue regeneration, and tumor progression. It also contributes to retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Although absent in melanoma 2 (AIM2) has been linked to inflammatory disorders, autoimmune diseases, and cancers, its role in the EMT of the retinal pigment epithelium (RPE-EMT) and retinal diseases remains unclear.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
RAD18 is a conserved eukaryotic E3 ubiquitin ligase that promotes genome stability through multiple pathways. One of these is gap-filling DNA synthesis at active replication forks and in post-replicative DNA. RAD18 also regulates homologous recombination (HR) repair of DNA breaks; however, the current literature describing the contribution of RAD18 to HR in mammalian systems has not reached a consensus.
View Article and Find Full Text PDFExp Eye Res
January 2025
Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215000, China; Key Laboratory of Geriatric Diseases and Immunology, Ministry of Education, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China. Electronic address:
Due to its unique physiological structure and functions, the eye has received considerable attention in the field of adeno-associated virus (AAV) gene therapy. Inherited retinal degenerative diseases, which arise from pathogenic mutations in mRNA transcripts expressed in the eye's photoreceptor cells or retinal pigment epithelium (RPE), are the most common cause of vision loss. However, current retinal gene therapy mostly involves subretinal injection of therapeutic genes, which treats a limited area, entails retinal detachment, and requires sophisticated techniques.
View Article and Find Full Text PDFPhytomedicine
January 2025
School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China. Electronic address:
Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!