pH-Triggered geometrical shape switching of a cationic peptide nanoparticle for cellular uptake and drug delivery.

Colloids Surf B Biointerfaces

School of Bioscience and Technology, Weifang Medical University, 7166 Baotong West Street, Weifang, 261042, China. Electronic address:

Published: April 2020

The geometry of nanoparticles plays an important role in their performance as drug carriers. However, the pH-triggered geometrical shape switching of a cationic peptide consisting of isoleucine and lysine is seldom reported. In this work, we designed a cationic peptide with acid reactivity that can be loaded with the poorly soluble antitumor drug (doxorubicin (DOX)) to enhance tumor cell uptake and drug delivery. In a weakly acidic environment, a large portion of random coil structures formed, which subsequently led to nanoparticle destruction and rapid DOX release. In vitro studies demonstrated that this cationic peptide exhibits low toxicity to normal cells. The amount of DOX-encapsulating peptide nanoparticles taken up by tumor cells was greater than that taken up by normal cells. Our results indicated that the use of a weakly acidic microenvironment to induce geometric shape switching in drug-loaded peptide nanoparticles should be a promising strategy for antitumor drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.110811DOI Listing

Publication Analysis

Top Keywords

cationic peptide
16
shape switching
12
drug delivery
12
ph-triggered geometrical
8
geometrical shape
8
switching cationic
8
uptake drug
8
antitumor drug
8
weakly acidic
8
normal cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!