Comprehensive assessment for the residual characteristics and degradation kinetics of pesticides in Panax notoginseng and planting soil.

Sci Total Environ

Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China. Electronic address:

Published: April 2020

Incorrect and excess usage of pesticides during crop cultivation poses a serious threat to human health and ecosystems. In this study, we tested for the presence of 201 pesticide residues in 90 batches of Panax notoginseng (P. notoginseng) and 10 batches of planting soil. Pesticide residue characteristics and the relationship between pesticides present in P. notoginseng and the soil were discussed. Twenty-nine pesticides were detected in P. notoginseng samples and 15 pesticides were found in the soil samples. In P. notoginseng samples, the 68.9% of the identified pesticides were fungicides, and six fungicides (procymidone, iprodione, pyrimethanil, propiconazole, dimethomorph and tebuconazole) were found in >90% of the samples. Nine insecticides were found, with one insecticide, chlorpyrifos, detected in 93.3% of the P. notoginseng samples. The residual concentrations of 17 pesticides were found at levels exceeded the "non-Chinese" maximum residue levels (MRLs) for Ginseng and 17 pesticides were found at levels exceeding the MRLs set by China for "pollution-free" P. notoginseng. We observed no significant differences in pesticide residues were found on P. notoginseng from different cultivation areas. We also analyzed the degradation kinetics of pesticides in the soil, as well as their bioconcentration factors (BCFs), and found that the fungicides iprodione and myclobutanil displayed strong uptake from the soil to the root of P. notoginseng. Together, our data suggest that fungicides should be considered as key monitoring substances in P. notoginseng and planting soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.136718DOI Listing

Publication Analysis

Top Keywords

planting soil
12
notoginseng samples
12
notoginseng
11
pesticides
9
degradation kinetics
8
kinetics pesticides
8
panax notoginseng
8
notoginseng planting
8
pesticide residues
8
pesticides soil
8

Similar Publications

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Genome-wide association mapping of bruchid resistance loci in soybean.

PLoS One

January 2025

Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.

Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.

View Article and Find Full Text PDF

Climate change threatens smallholder agriculture and food security in the Global South. While cropland expansion is often used to counter adverse climate effects despite ecological trade-offs, the benefits for diets and nutrition remain unclear. This study quantitatively examines relationships between climate anomalies, forest loss from cropland expansion, and dietary outcomes in Nigeria, Africa's most populous country.

View Article and Find Full Text PDF

Here, we report the complete genome sequence of a new carlavirus causing mosaic on mint plants in Italy, which we have tentatively named "mint virus C" (MVC). Flexuous particles of around 600 nm were observed using transmission electron microscopy, and next-generation sequencing was performed to determine the nucleotide sequence of the MVC genome, which was found to be 8558 nt long, excluding the poly(A) tail, and shows the typical organization of a carlavirus. The putative proteins encoded by MVC are 44-56% identical to the closest matches in the NCBI database, suggesting that MVC should be considered a member of a new species in the genus Carlavirus.

View Article and Find Full Text PDF

The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!