The ability of the native emergent macrophytes Typha domingensis for monitoring pollution with trace metals in Egyptian Lake Burullus was investigated through developing regression models for predicting their concentrations in the plant tissues. Plant samples (above-ground shoot and below-ground root and rhizome) as well as sediment samples were collected monthly during one growing season and analyzed. The association of trace metals concentration with several sediment characteristics (pH, organic matter, clay and silt) was also studied using the simple linear correlation coefficient (r). The concentration of some trace metals was significantly proportional to its values in the sediment such as Cd in the shoot, rhizome and root, Fe in the rhizome, and Ag in the root. There was positive relationship between the bioaccumulation factor (BAF) of Ag, Cd, Fe, Pb and Zn and sediment pH, organic matter and clay content. The developed regression models were significantly valid with high model efficiency and coefficient of determination, and low mean normalized average error. Trace metals were accumulated in the below-ground root and rhizome rather than in the shoot. Only Ag, Co and Ni provided bioaccumulation factor (BAF) < 1, while Ag was the only trace metal that could be transferred to some extend from the root to the rhizome and from there to the shoot [translocation factor (TF) 2.55 and 1.15, respectively]. Typha domingensis in Lake Burullus could be regarded as a bioindicator of trace metals pollution, and a good candidate as phytoremediator for Ag. The information on the phytoremediation capacity of T. domingensis certainly helps to solve contamination problems at Egyptian Lake Burullus region using this native plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.136603 | DOI Listing |
Food Chem
December 2024
Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri, Turkiye; Technology Research and Application Center (TAUM), Erciyes University, Kayseri, Turkiye; Turkish Academy of Sciences (TUBA), Cankaya, Ankara, Turkiye; Khazar University Nano BioAnalytical Chemistry Center (NBAC), Mahsati Str 41, AZ-1096 Baku, Azerbaijan.
In this study, a green synthesis method for synthesizing a novel nanocomposite (CuO/g-C₃N₄/Fe₃O₄) utilizing renewable dragon fruit peels as the primary raw material was developed. Hydrothermal and thermal decomposition techniques were used for nanocomposite synthesis. This nanocomposite was subsequently employed for the separation and preconcentration of Cd(II) from various environments, including food and water samples.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
The cultivation of edible mushrooms plays a significant role in revitalizing numerous rural regions in China. However, this process generates a large amount of spent mushroom substrate (SMS). Traditional methods for handling SMS, such as random stacking and incineration, lead to resource waste and environmental pollution.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China. Electronic address:
Copper, as a vital trace element and ubiquitous environmental pollutant, exhibits a positive correlation with the neurodegenerative diseases. Recent studies have highlighted ferroptosis's significance in heavy metal-induced neurodegenerative diseases, yet its role in copper-related neurotoxicity remains unclear. This study aimed to investigate the role of ferroptosis in copper-induced neurotoxicity.
View Article and Find Full Text PDFTalanta
December 2024
The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523700, China. Electronic address:
This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:
Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!