The LIBRA compound library is a collection of 522 non-commercial molecules contributed by various Italian academic laboratories. These compounds have been designed and synthesized during different medicinal chemistry programs and are hosted by the Italian Institute of Technology. We report the screening of the LIBRA compound library against Trypanosoma brucei and Leishmania major pteridine reductase 1, TbPTR1 and LmPTR1. Nine compounds were active against parasitic PTR1 and were selected for cell-based parasite screening, as single agents and in combination with methotrexate (MTX). The most interesting TbPTR1 inhibitor identified was 4-(benzyloxy)pyrimidine-2,6-diamine (LIB_66). Subsequently, six new LIB_66 derivatives were synthesized to explore its Structure-Activity-Relationship (SAR) and absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. The results indicate that PTR1 has a preference to bind inhibitors, which resemble its biopterin/folic acid substrates, such as the 2,4-diaminopyrimidine derivatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2020.112047 | DOI Listing |
Ecotoxicol Environ Saf
December 2024
Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Changning District, Shanghai 200336, China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 720 Xianxia Road, Changning District, Shanghai 200336, China. Electronic address:
The effects of chlormequat chloride, a typical plant growth regulator, on the medicinal herb Corydalis yanhusuo were investigated. A standardized field experiment was conducted to investigate the molecular mechanisms and variations in active compounds resulting from chlormequat chloride treatment. Samples of C.
View Article and Find Full Text PDFChembiochem
December 2024
Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, FL 32816, USA.
Metal-based drugs have the potential to significantly improve therapeutic efficacy by exhibiting key properties such as appropriate charge, thermodynamic stability, hydrolytic stability, oral bioavailability, and dual functional capability. These properties are critical for effective intracellular uptake, as drugs or prodrugs must cross cellular membranes to target specific organelles like mitochondria, essential for maximizing therapeutic impact. Bio-essential metal ions such as copper, zinc, and iron are transported through specialized active channels, whereas others depend on passive diffusion to enter cells.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
Glioblastoma (GBM) represents an aggressive brain tumor, characterized by intra- and inter-tumoral heterogeneity and therapy resistance, leading to unfavourable prognosis. An increasing number of studies pays attention on the regulation of ferroptosis, an iron-dependent cell death, as a strategy to reverse drug resistance in cancer. However, the debate on whether this strategy may have important implications for the treatment of GBM is still ongoing.
View Article and Find Full Text PDFJ Inorg Biochem
September 2024
Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97239, USA. Electronic address:
The NO dioxygenation reaction catalyzed by heme-containing globin proteins is a crucial aerobic detoxification pathway. Accordingly, the second order reaction of NO with oxymyoglobin and oxyhemoglobin has been the focus of a large number of kinetic and spectroscopic studies. Stopped-flow and rapid-freeze-quench (RFQ) measurements have provided evidence for the formation of a Fe(III)-nitrato complex with millisecond lifetime prior to release of the nitrate product, but the temporal resolution of these techniques is insufficient for the characterization of precursor species.
View Article and Find Full Text PDFSci Adv
February 2024
NanoScience Technology Center, University of Central Florida, 12424 Research Parkway Suite 400, Orlando, FL 32826, USA.
The accurate detection, classification, and separation of chiral molecules are pivotal for advancing pharmaceutical and biomolecular innovations. Engineered chiral light presents a promising avenue to enhance the interaction between light and matter, offering a noninvasive, high-resolution, and cost-effective method for distinguishing enantiomers. Here, we present a nanostructured platform for surface-enhanced infrared absorption-induced vibrational circular dichroism (VCD) based on an achiral plasmonic system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!