Location and function of transient receptor potential canonical channel 1 in ventricular myocytes.

J Mol Cell Cardiol

Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA. Electronic address:

Published: February 2020

Transient receptor potential canonical 1 (TRPC1) protein is abundantly expressed in cardiomyocytes. While TRPC1 is supposed to be critically involved in cardiac hypertrophy, its physiological role in cardiomyocytes is poorly understood. We investigated the subcellular location of TRPC1 and its contribution to Ca signaling in mammalian ventricular myocytes. Immunolabeling, three-dimensional scanning confocal microscopy and quantitative colocalization analysis revealed an abundant intracellular location of TRPC1 in neonatal rat ventricular myocytes (NRVMs) and adult rabbit ventricular myocytes. TRPC1 was colocalized with intracellular proteins including sarco/endoplasmic reticulum Ca ATPase 2 in the sarcoplasmic reticulum (SR). Colocalization with wheat germ agglutinin, which labels the glycocalyx and thus marks the sarcolemma including the transverse tubular system, was low. Super-resolution and immunoelectron microscopy supported the intracellular location of TRPC1. We investigated Ca signaling in NRVMs after adenoviral TRPC1 overexpression or silencing. In NRVMs bathed in Na and Ca free solution, TRPC1 overexpression and silencing was associated with a decreased and increased SR Ca content, respectively. In isolated rabbit cardiomyocytes bathed in Na and Ca free solution, we found an increased decay of the cytosolic Ca concentration [Ca] and increased SR Ca content in the presence of the TRPC channel blocker SKF-96365. In a computational model of rabbit ventricular myocytes at physiological pacing rates, Ca leak through SR TRPC channels increased the systolic and diastolic [Ca] with only minor effects on the action potential and SR Ca content. Our studies suggest that TRPC1 channels are localized in the SR, and not present in the sarcolemma of ventricular myocytes. The studies provide evidence for a role of TRPC1 as a contributor to SR Ca leak in cardiomyocytes, which was previously explained by ryanodine receptors only. We propose that the findings will guide us to an understanding of TRPC1 channels as modulators of [Ca] and contractility in cardiomyocytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085981PMC
http://dx.doi.org/10.1016/j.yjmcc.2020.01.008DOI Listing

Publication Analysis

Top Keywords

ventricular myocytes
24
location trpc1
12
trpc1
11
transient receptor
8
receptor potential
8
potential canonical
8
intracellular location
8
rabbit ventricular
8
trpc1 overexpression
8
overexpression silencing
8

Similar Publications

Altered Protein Kinase A-Dependent Phosphorylation of Cav1.2 in Left Ventricular Myocardium from Haploinsufficient Rat Hearts.

Int J Mol Sci

December 2024

Institute of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Biochemical and Pharmacological Center (BPC) Marburg, University of Marburg, 35032 Marburg, Germany.

encodes the α1c subunit of the L-type Ca channel, Cav1.2. Ventricular myocytes from haploinsufficient () rats exhibited reduced expression of Cav1.

View Article and Find Full Text PDF

MicroRNA (miR: small noncoding RNA)-150 is evolutionarily conserved and is downregulated in patients with diverse forms of heart failure (HF) and in multiple mouse models of HF. Moreover, miR-150 is markedly correlated with the outcome of patients with HF. We previously reported that systemic or cardiomyocyte-derived miR-150 in mice elicited myocardial protection through the inhibition of cardiomyocyte death, without affecting neovascularization and T cell infiltration.

View Article and Find Full Text PDF

Wnt/β-catenin signaling has been shown to regulate gene expressions in cardiomyocytes. However, it is not known if this effect is dependent on the sex of cells or the glucose level in the culture medium. In the present study, ventricular myocytes were prepared from male and female neonatal rats and maintained in either a glucose-rich (25 mM) medium or a low-glucose (3 mM), lipid-rich medium.

View Article and Find Full Text PDF

Inhibitory Effects of Cenobamate on Multiple Human Cardiac Ion Channels and Possible Arrhythmogenic Consequences.

Biomolecules

December 2024

Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.

Cenobamate is a novel third-generation antiepileptic drug used for the treatment of focal onset seizures and particularly for multi-drug-resistant epilepsy; it acts on multiple targets: GABA receptors (EC 42-194 µM) and persistent neuronal Na currents (IC 59 µM). Side effects include QT interval shortening with >20 ms, but not <300 ms. Our in vitro cardiac safety pharmacology study was performed via whole-cell patch-clamp on HEK293T cells with persistent/inducible expression of human cardiac ion channel isoforms hNav1.

View Article and Find Full Text PDF

(1) BACKGROUND: Metabolic abnormalities and immune inflammation are key elements within pathogenesis of pulmonary arterial hypertension (PAH). And in PAH patients, aberrant glutamine metabolism has been observed; however, the function of glutaminase 1 (GLS1) in macrophage is still unknown. So we aims to investigate GLS1's impact upon macrophages in PAH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!