Knee
Hospital General Universitario Gregorio Marañón, Madrid, Spain; Surgery Department, Faculty of Medicine, Universidad Complutense, Madrid, Spain.
Published: June 2020
Background: Infection after arthroplasty (prosthetic joint infection; PJI) is a devastating complication that can lead to functional loss of the affected limb. The purpose of the present study is to develop an animal model of PJI using a three-dimensional printed species-specific implant, which is a step forward for future research to develop new therapeutic strategies.
Methods: Fifteen New Zealand White rabbits were employed to reproduce PJI by intra-articular inoculation of 10 cfu/ml of Staphylococcus aureus ATCC® 29213. Three-dimensional printing technology was used to design a species-specific four-millimeter-thick implant maintaining the anatomical irregularities of the tibial-articular surface. Response to bacterial inoculation was monitored by clinical (weight and temperature), hematological (leukocyte, lymphocyte and platelet counts) and biochemical (erythrocyte sedimentation rate) analyses at the time of inoculation and seven days thereafter, when microbiological samples for culture were also taken.
Results: All animals recovered from surgery and all displayed full weight-bearing four days postoperatively. Fourteen of the 15 tested animals (93.3%) presented positive microbiological cultures. A statistically significant increase was found in the number of platelets and leukocytes, as well as a significant decrease in the percentage of lymphocytes, with P = 0.0001 in all cases.
Conclusions: An experimental model faithfully reproducing the periprosthetic infection environment and achieving a high rate of infection has been designed. The use of three-dimensional printed species-specific implants allows rapid postoperative recovery of animals and the development of a stable biofilm. These characteristics make it an interesting model to study its pathogenesis and possible therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.knee.2019.12.012 | DOI Listing |
Adv Sci (Weinh)
January 2025
National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
To bolster the capacity for managing potential infectious diseases in the future, it is critical to develop specific antiviral drugs that can be rapidly designed and delivered precisely. Herein, a CRISPR/Cas13d system for broad-spectrum targeting of influenza A virus (IAV) from human, avian, and swine sources is designed, incorporating Cas13d mRNA and a tandem CRISPR RNA (crRNA) specific for the highly conserved regions of viral polymerase acidic (PA), nucleoprotein (NP), and matrix (M) gene segments, respectively. Given that the virus targets cells with specific receptors but is not limited to a single organ, a Susceptible Cell Selective Delivery (SCSD) system is developed by modifying a lipid nanoparticle with a peptide mimicking the function of the hemagglutinin of influenza virus to target sialic acid receptors.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Bone and Joint Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Rationale: Synovial sarcoma (SS) is a rare and highly malignant soft tissue sarcoma. When SS occurs in atypical locations, it can present significant diagnostic challenges. We report a case of paraspinal SS initially misdiagnosed as spinal tuberculosis, highlighting the diagnostic difficulties and the importance of considering SS in the differential diagnosis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, China.
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.
View Article and Find Full Text PDFFASEB J
January 2025
State Key Laboratory of Virology, Institute of Medical Virology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, Hubei, China.
Hantaan virus (HTNV) infection causes severe hemorrhagic fever with renal syndrome (HFRS) in humans and the infectious process can be regulated by autophagy. The phosphatase and tensin homolog (PTEN) protein has antiviral effects and plays a critical role in the autophagy pathway. However, the relationship between PTEN and HTNV infection is not clear and whether PTEN-regulated autophagy involves in HTNV replication is unknown.
View Article and Find Full Text PDFVirulence
December 2025
Henan International Joint Laboratory of Children's Infectious Diseases, Department of Neonatology, Henan Province Engineering Research Center of Diagnosis and Treatment of Pediatric Infection and Critical Care, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
is a gram-negative pathogen that can cause multiple diseases including sepsis, urinary tract infections, and pneumonia. The escalating detections of hypervirulent and antibiotic-resistant isolates are giving rise to growing public concerns. Outer membrane vesicles (OMVs) are spherical vesicles containing bioactive substances including lipopolysaccharides, peptidoglycans, periplasmic and cytoplasmic proteins, and nucleic acids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.