Fluorescence line narrowing (FLN), is a method by which highly characteristic spectra have been obtained for a large number of polycyclic aromatic hydrocarbon (PAH)-DNA adducts and is well suited for the analysis of exposures to complex mixtures of PHA. The basic method is described and recent improvements discussed which overcome one of the major limitations of the method to its wider application to biological samples, that is its sensitivity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

fluorescence narrowing
8
enhancement sensitivity
4
sensitivity fluorescence
4
narrowing spectrometry
4
spectrometry detection
4
detection carcinogen-dna
4
carcinogen-dna adducts
4
adducts fluorescence
4
narrowing fln
4
fln method
4

Similar Publications

Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.

View Article and Find Full Text PDF

Effects of UV-B light exposure during automatic milking on vitamin D levels in Holstein Friesian cows.

Front Vet Sci

January 2025

Clinic for Reproduction and Large Animals-Section for Ruminants, Veterinary Faculty, University of Ljubljana, Ljubljana, Slovenia.

Vitamin D is essential for cattle and can be synthesized in the skin under ultraviolet irradiation. This study investigated the effects of narrow-band UV-B irradiation during automatic milking on blood vitamin D concentration and the influence of hair and black skin areas on cutaneous vitamin D synthesis in Holstein Friesian cows. Fifty-one cows were stratified by milk yield, days after calving, and percentage of black skin, then divided into three groups: shaved and irradiated (80 J/m), unshaved and irradiated (129-305 J/m), and a control group.

View Article and Find Full Text PDF

Synergistic therapy with celastrol-curcumin multifunctional nanomedicine: Anti-hepatocellular carcinoma and reduced hepatotoxicity.

Int J Pharm

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China. Electronic address:

Hepatocellular carcinoma is one of the leading causes of cancer deaths globally and a key hindrance to extending life expectancy. Celastrol (CEL) demonstrates excellent antitumor activity, but faces challenges like low solubility and a narrow therapeutic window, limiting its clinical application. To address these limitations, drug combinations and nano-delivery systems have emerged as effective solutions.

View Article and Find Full Text PDF

The development of pure-green organic emitters with ideal emission peak and ultra-narrow full-widths at half-maximum (FWHMs) remains a formidable challenge. Herein, we report two new green emitters, CNBN and MCNBN, which achieve extremely narrow FWHMs by synergistic rigid π-extension and cyano-substitution for sky-blue multi-resonance thermally activated delayed fluorescence (MR-TADF) core. The introduction of cyano groups induces red-shifts of emission to green region and dramatically minimize the FWHMs.

View Article and Find Full Text PDF

Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials possess unique advantages of high-efficiency and narrowband emission, which have rapidly occupied an important position in the field of organic light-emitting diodes (OLEDs). In recent years, significant advancements have been made in the development of MR-TADF materials, particularly in achieving spectral narrowing for high-color-purity OLED applications. Based on diverse MR-TADF molecular skeletons, this review summarizes the primary molecular strategies to narrow spectrum by suppressing structural relaxation and intermolecular interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!