Toward an Optimized Process for Clinical Manufacturing of CAR-Treg Cell Therapy.

Trends Biotechnol

Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitaetsmedizin Berlin, 13353 Berlin, Germany; Berlin Center for Advanced Therapies (BeCAT), Charité - Universitaetsmedizin Berlin, 13353 Berlin, Germany. Electronic address:

Published: October 2020

Chimeric antigen receptor (CAR) technology and its application to regulatory T cells (Tregs) has garnered interest among researchers in the field of cell and gene therapy. Merging the benefits of CAR technology with Tregs offers a novel and promising therapeutic option for durable reshaping of undesired immune responses following solid organ or hematopoietic stem cell transplantation, as well as in immune-related disorders. However, major challenges remain for developing a standardized and robust good manufacturing practice (GMP)-compliant manufacturing process for CAR-Treg cells. We review current progress in the field and recommend ways to improve CAR-Treg manufacturing processes based on lessons learned from first-generation Treg therapeutics as well as from anticancer CAR-T cell development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibtech.2019.12.009DOI Listing

Publication Analysis

Top Keywords

car technology
8
optimized process
4
process clinical
4
manufacturing
4
clinical manufacturing
4
manufacturing car-treg
4
cell
4
car-treg cell
4
cell therapy
4
therapy chimeric
4

Similar Publications

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.

View Article and Find Full Text PDF

Emerging Frontiers in Colorectal Cancer Therapy: From Targeted Molecules to Immunomodulatory Breakthroughs and Cell-Based Approaches.

Dig Dis Sci

January 2025

Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Yeman St, Chamran Expressway, P.O. Box 19857-17413, Tehran, Iran.

Colorectal cancer (CRC) is ranked as the second leading cause of cancer-related deaths globally, necessitating urgent advancements in therapeutic approaches. The emergence of groundbreaking therapies, including chimeric antigen receptor-T (CAR-T) cell therapies, oncolytic viruses, and immune checkpoint inhibitors, marks a transformative era in oncology. These innovative modalities, tailored to individual genetic and molecular profiles, hold the promise of significantly enhancing patient outcomes.

View Article and Find Full Text PDF

Drug discovery continues to face a staggering 90% failure rate, with many setbacks occurring during late-stage clinical trials. To address this challenge, there is an increasing focus on developing and evaluating new technologies to enhance the "design" and "test" phases of antibody-based drugs (e.g.

View Article and Find Full Text PDF

Development of chimeric antigen receptor T cells targeting cancer-expressing podocalyxin.

Regen Ther

March 2025

Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.

Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!