Isoniazid and rifampicin are well-known anti-mycobacterial agents and are widely used to treat pulmonary tuberculosis (TB) as part of the combined therapy approach, recommended by the World Health Organization. The ingestion of these first-line TB drugs are, however, not free of side effects, and are toxic to the liver, kidney, and central nervous system. These side effects are associated with poor treatment compliance, resulting in TB treatment failure, relapse and drug resistant TB. This occurrence has subsequently led to the recent application of novel research technologies, towards a better understanding of the underlying toxicity mechanisms of TB drugs in humans, mostly focussing on the 2 most important TB drugs: isoniazid and rifampicin. In this review, we discuss the contribution that one such an approach, termed metabolomics has made toward this field, and also highlight the impact that this might have towards the development of improved TB treatment regimens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2020.01.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!