A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isolipidic replacement of krabok oil by whole krabok seed reduces in vitro methanogenesis, but negatively affects fermentation. | LitMetric

The background of the current in vitro study involves the issue of methane (CH ) production inherent to rumen fermentation. One of the dietary strategies to reduce enteric CH production by ruminants involves the supplementation of medium-chain fatty acids in diets. As such, oils containing high amounts of MCFA, such as coconut, palm kernel and krabok oil, are of much interest to formulate energy efficient and environmentally friendly rations for ruminants. Krabok oil (KO) reduces methanogenesis, but the appropriate inclusion level of dietary KO is unclear. We therefore investigated the dose-response relationship between krabok oil and CH production. In practice, the use of whole krabok seed (WKS), instead of KO, is easier, but the efficacy of WKS to inhibit methanogenesis was hitherto unknown. Thus, we also investigated whether WKS provides an alternative tool to inhibit CH production. The experimental substrates contained either KO, WKS, the residue of WKS after fat extraction residue (FER) or FER + KO. Appropriate amounts of WKS or its derivatives were added to a basal substrate so as to attain either a low, medium or high content of KO, that is, 37-46, 90-94 and 146-153 g/kg dry matter respectively. The experimental substrates were formulated to keep the amounts of incubated fat-free OM, crude protein, neutral detergent fibre and acid detergent fibre constant in order to avoid biased results through potential differences in fermentability between WKS and its derivatives, and the basal substrate. The latter resembled the ingredient composition of a total mixed ration commonly used in Thai dairy cows. Fully automated gas production (GP) equipment was used to measure gas- and CH production. Irrespective of the type of substrate (p ≥ .115), both the absolute (ml/g fat-free OM) and relative (% of total GP) CH production was reduced at the highest inclusion level of WKS or its derivatives (p ≤ .019). Total GP (ml/g fat-free OM), however, was reduced after incubation of FER, FER + KO, and WKS, but not KO, at the highest inclusion level of the respective substrates (p = .019). Volatile fatty acids were likewise affected (p ≤ .001). Krabok oil can inhibit CH production but only when the dietary KO content is at least 9.4% (DM). Supplementation of KO in the form of WKS, however, is considered not opportune because the fat extracted residue of WKS is poorly degraded during fermentation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpn.13304DOI Listing

Publication Analysis

Top Keywords

krabok oil
20
inclusion level
12
wks derivatives
12
wks
11
krabok seed
8
production
8
fatty acids
8
inhibit production
8
experimental substrates
8
residue wks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!