A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of dissolved organic phase composition and salinity on the engineered sulfate application in a flow-through system. | LitMetric

Effects of dissolved organic phase composition and salinity on the engineered sulfate application in a flow-through system.

Environ Sci Pollut Res Int

Ecohydrology Research Group and Water Institute, Department of Earth and Environmental Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.

Published: April 2020

Engineered sulfate application has been proposed as an effective remedy to enhance the rate-limited biodegradation of petroleum-hydrocarbon-contaminated subsurface environments, but the effects of dissolved organic phase composition and salinity on the efficiency of this method are unknown. A series of flow-through experiments were conducted for 150 days and dissolved benzene, toluene, naphthalene, and 1-methylnaphthalene were injected under sulfate-reducing and three different salinity conditions for 80 pore volumes. Then, polycyclic aromatic hydrocarbons (PAHs) were omitted from the influent solution and just dissolved benzene and toluene were injected to investigate the influence of dissolved phase composition on treatment efficiency. A stronger sorption capacity for PAHs was observed and the retardation of the injected organic compounds followed the order of benzene < toluene < naphthalene < 1-methylnaphthalene. Mass balance analyses indicated that 50 and 15% of toluene and 1-methlynaphtalene were degraded, respectively. Around 5% of the injected naphthalene degraded after injecting > 60 PVs influent solution, and benzene slightly degraded following the removal of PAH compounds. The results showed substrate interactions and composition can result in rate-limited and insufficient biodegradation. Similar reducing conditions and organic utilization were observed for different salinity conditions in the presence of the multi-component dissolved organic phase. This was attributed to the dominant microbial community involved in toluene degradation that exerted catabolic repression on the simultaneous utilization of other organic compounds and were not susceptible to changes in salinity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7136190PMC
http://dx.doi.org/10.1007/s11356-020-07696-6DOI Listing

Publication Analysis

Top Keywords

dissolved organic
12
organic phase
12
phase composition
12
benzene toluene
12
effects dissolved
8
composition salinity
8
engineered sulfate
8
sulfate application
8
dissolved benzene
8
toluene naphthalene
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!