Molecular characterization and expression pattern of inositol-requiring enzyme 1 (IRE1) in blunt snout bream (Megalobrama amblycephala): its role of IRE1 involved in inflammatory response induced by lipopolysaccharide.

Fish Physiol Biochem

Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.

Published: June 2020

This study aimed to characterize the full-length cDNA of IRE1 from fish Megalobrama amblycephala and investigate its role in the pro-inflammatory response. A full-length cDNA coding IRE1 was cloned from blunt snout bream by RT-PCR and RACE approaches. The cDNA obtained covered 3665 bp with an open reading frame of 3096 bp encoding 1031 amino acids. Sequence alignment and phylogenetic analysis revealed a high degree of conservation (74-92%) among various species, retaining one signal peptide, one luminal domain, one serine/threonine kinase domain, one RNase domain, one activation loop, two N-linked glycosylation sites, and several phosphorylation sites. The highest IRE1 expression was observed in the trunk kidney followed by the brain and spleen, whereas relatively low expression levels were detected in the liver, intestine, adipose, skin, and heart. After lipopolysaccharide (LPS) challenge, the expressions of glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1 (IRE1), spliced X-box binding protein 1 (XBP1s), C/EBP homologous protein (CHOP), nuclear factor kappa B (NF-κB), tumor necrosis factor alpha (TNFα), and interleukin-6 (IL-6) all increased remarkably in the spleen and brain at different sampling time points, while LPS also upregulated all the genes tested in the intestine except C/EBP homologous protein. Overall, the results indicated that the IRE1 gene of Megalobrama amblycephala shared a high similarity compared with other vertebrates including several bony fish species. Its expression in three tissues was induced remarkably by the LPS challenge, which indicated that IRE1 played a vital role in LPS-induced inflammation on fish.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-019-00753-zDOI Listing

Publication Analysis

Top Keywords

megalobrama amblycephala
12
inositol-requiring enzyme
8
ire1
8
enzyme ire1
8
blunt snout
8
snout bream
8
full-length cdna
8
lps challenge
8
c/ebp homologous
8
homologous protein
8

Similar Publications

The black bream () is an economically important species widely distributed in China, with its geographic populations potentially having undergone differentiations and local adaptations. In this study, we presented a chromosome-level genome assembly of this species and investigated genetic differentiations of its populations that are allopatric (the northern one) and sympatric (the Poyang Lake) to its kin species, the blunt-snout bream (), using whole genome resequencing analysis. The results showed that the genome size of black bream was 1.

View Article and Find Full Text PDF

Background: Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish.

Results: To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) has emerged as a novel non-thermal process technology for inactivating microorganisms due to its low cost, safety, and efficiency. This study aimed to investigate the antimicrobial effect of VK-mediated PDI against Pseudomonas fluorescens (P. fluorescens) and to assess its impact on the quality of the blunt bream contaminated with P.

View Article and Find Full Text PDF

A novel lncRNA MSTRG.59348.1 regulates muscle cells proliferation and innate immunity of Megalobrama amblycephala.

Int J Biol Macromol

January 2025

College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

In mammals, long non-coding RNAs (lncRNAs) play a regulatory role in gene expression, contribute to immune responses, and aid in pathogen elimination, primarily through interactions with RNA-binding proteins (RBPs). However, the role of lncRNAs in fish innate immunity and their interaction with RBPs remains uncertain. To investigate the immunomodulatory role of lncRNAs in Megalobrama amblycephala, we identified the novel lncRNA MSTRG.

View Article and Find Full Text PDF

Research on Function of Ribosomal Protein S6 Kinases, 1α and β, Based on Molecular Cloning and siRNA-Based Interference in Juvenile Blunt Snout Bream ().

Biology (Basel)

October 2024

Tongwei Agricultural Development Co., Ltd., Key Laboratory of Nutrition and Healthy Culture of Aquatic, Livestock and Poultry, Ministry of Agriculture and Rural Affairs, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu 610093, China.

Article Synopsis
  • The study focused on how two isoforms of ribosomal protein S6 kinase 1 (S6K1α and S6K1β) affect the expression of genes related to glycolysis and gluconeogenesis in juvenile blunt snout bream.
  • Researchers cloned and characterized these isoforms, revealing their sequences and significant expression in heart and gonads.
  • The use of siRNAs demonstrated that S6K1α primarily regulates gluconeogenesis, while both S6K1α and S6K1β work together to co-regulate glycolysis, highlighting their distinct roles in metabolic processes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!