A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma. | LitMetric

Objectives: In Japan, endoscopic resection (ER) is often used to treat esophageal squamous cell carcinoma (ESCC) when invasion depths are diagnosed as EP-SM1, whereas ESCC cases deeper than SM2 are treated by surgical operation or chemoradiotherapy. Therefore, it is crucial to determine the invasion depth of ESCC via preoperative endoscopic examination. Recently, rapid progress in the utilization of artificial intelligence (AI) with deep learning in medical fields has been achieved. In this study, we demonstrate the diagnostic ability of AI to measure ESCC invasion depth.

Methods: We retrospectively collected 1751 training images of ESCC at the Cancer Institute Hospital, Japan. We developed an AI-diagnostic system of convolutional neural networks using deep learning techniques with these images. Subsequently, 291 test images were prepared and reviewed by the AI-diagnostic system and 13 board-certified endoscopists to evaluate the diagnostic accuracy.

Results: The AI-diagnostic system detected 95.5% (279/291) of the ESCC in test images in 10 s, analyzed the 279 images and correctly estimated the invasion depth of ESCC with a sensitivity of 84.1% and accuracy of 80.9% in 6 s. The accuracy score of this system exceeded those of 12 out of 13 board-certified endoscopists, and its area under the curve (AUC) was greater than the AUCs of all endoscopists.

Conclusions: The AI-diagnostic system demonstrated a higher diagnostic accuracy for ESCC invasion depth than those of endoscopists and, therefore, can be potentially used in ESCC diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10388-020-00716-xDOI Listing

Publication Analysis

Top Keywords

invasion depth
16
ai-diagnostic system
16
escc invasion
12
escc
9
artificial intelligence
8
convolutional neural
8
neural networks
8
esophageal squamous
8
squamous cell
8
cell carcinoma
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!