Novel drought tolerance genes were identified by screening thousands of random genomic fragments from grass species in transgenic rice. Identification of agronomically important genes is a critical step for crop breeding through biotechnology. Multiple approaches have been employed to identify new gene targets, including comprehensive screening platforms for gene discovery such as the over-expression of libraries of cDNA clones. In this study, random genomic fragments from plants were introduced into rice and screened for drought tolerance in a high-throughput manner with the aim of finding novel genetic elements not exclusively limited to coding sequences. To illustrate the power of this approach, genomic libraries were constructed from four grass species, and screening a total of 50,825 transgenic rice lines for drought tolerance resulted in the identification of 12 reproducibly efficacious fragments. Of the twelve, two were from the mitochondrial genome of signal grass and ten were from the nuclear genome of buffalo grass. Subsequent sequencing and analyses revealed that the ten fragments from buffalo grass carried a similar genetic element with no significant homology to any previously characterized gene. The deduced protein sequence was rich in acidic amino acid residues in the C-terminal half, and two of the glutamic acid residues in the C-terminal half were shown to play an important role in drought tolerance. The results demonstrate that an open-ended screening approach using random genomic fragments could discover trait genes distinct from gene discovery based on known pathways or biased toward coding sequence over-expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00122-020-03548-6 | DOI Listing |
Front Plant Sci
December 2024
Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy.
The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Molecular Biology and Biotechnology, University of Dar-es-salaam, Tanzania.
Sustainable agricultural practices are essential to meet food demands for the increased population while minimizing the environmental impact. Considering rice as staple food for most of the world's population, it requires innovative approaches to ensure sustainable production. In this paper, we create a hypothesis that integrated nutrient management (INM) acts as a source of energy for microbes and improves the physical, chemical and biological properties of soils, but the current understanding of how soil microbiomes interact in integrated nutrient management toward mediating climate stress to support sustainable rice crop production is limited.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Ecology and Evolutionary Biology, University of California Los Angeles, 621 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C grasses, a high photosynthetic rate (A) may depend on higher vein density (D) and hydraulic conductance (K). However, the higher D of C grasses suggests a hydraulic surplus, given their reduced need for high K resulting from lower stomatal conductance (g).
View Article and Find Full Text PDFJ Plant Res
January 2025
Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 779 00, Czech Republic.
The oxidative damage induced by abiotic stress factors such as salinity, drought, extreme temperatures, heavy metals, pollution, and high irradiance has been studied in Arabidopsis thaliana. Ultra-weak photon emission (UPE) is presented as a signature reflecting the extent of the oxidation process and/or damage. It can be used to predict the physiological state and general health of plants.
View Article and Find Full Text PDFPlanta
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
AtbZIP69 overexpression in wheat significantly enhanced drought and low nitrogen tolerance by modulating ABA synthesis, antioxidant activity, nitrogen allocation, and transporter gene expression, boosting yield. In this study, we generated wheat plants with improved low nitrogen (LN) and drought tolerance by introducing AtbZIP69, a gene encoding a basic leucine zipper domain transcription factor, into the wheat cultivar Shi 4056. AtbZIP69 localized to the nucleus and activated transcription.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!