Improved efficacy of antifungal drugs in combination with monoterpene phenols against Candida auris.

Sci Rep

Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa.

Published: January 2020

Emergence of Candida auris has been described as a global health threat due to its ability to cause invasive infections with high mortality rate and multidrug resistance. Novel drugs and therapies are required to target this organism and its pathogenicity. Anti-virulence approach and combination therapy have been proposed as alternatives in recent years. This study evaluated the virulence factors in C. auris, combination antifungal activity of phenolic compounds with antifungal drugs and determined effect of the most active compound on positive pathogenicity markers of C. auris. Antifungal susceptibility profile of 25 clinical isolates of C. auris against antifungal agents as well as against phenolic compounds was obtained using CLSI guidelines. Combination of the most active phenolic compound with antifungal drugs was determined. Effect of carvacrol on the virulence factors was also studied. Carvacrol was the most active phenol with median MIC of 125 µg/ml and its combination with fluconazole, amphotericin B, nystatin and caspofungin resulted synergistic and additive effects in 68%, 64%, 96% and 28%, respectively. Combination also reduced the MIC values of the drugs. All test strains showed adherence ability to epithelial cells and 96% of strains produced proteinase. None of the strains produced hyphae and phospholipase. At low concentrations, carvacrol significantly inhibited the adherence ability and proteinase production (both p < 0.01). Carvacrol has antifungal and anti-virulence activity against C. auris. It also showed an enhanced antifungal activity in combination with antifungal agents. Therefore it has potential to be developed into a novel antifungal agent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981193PMC
http://dx.doi.org/10.1038/s41598-020-58203-3DOI Listing

Publication Analysis

Top Keywords

antifungal drugs
12
candida auris
8
virulence factors
8
phenolic compounds
8
drugs determined
8
auris antifungal
8
adherence ability
8
strains produced
8
antifungal
6
combination
6

Similar Publications

Nitroxoline evidence amoebicidal activity against Acanthamoeba castellanii through DNA damage and the stress response pathways.

Int J Parasitol Drugs Drug Resist

January 2025

Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China. Electronic address:

Acanthamoeba castellanii is a widespread unicellular eukaryote found in diverse environments, including tap water, soil, and swimming pools. It is responsible for severe infections, such as Acanthamoeba keratitis and granulomatous amebic encephalitis, particularly in individuals with immunocompromisation. The ability of protozoans to form dormant and persistent cysts complicates treatment, as current therapies are ineffective against cyst stages and suffer from poor specificity and side effects.

View Article and Find Full Text PDF

Effect of Defined Block Sequence Terpolymers on Antifungal Activity and Biocompatibility.

Macromol Biosci

January 2025

Cluster for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia.

Invasive fungal infections cause over 3.7 million deaths worldwide annually, underscoring the critical need for new antifungal agents. Developing selective antifungal agents is challenging due to the shared eukaryotic nature of both fungal and mammalian cells.

View Article and Find Full Text PDF

The role of PPAR in fungal keratitis.

Front Immunol

January 2025

Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China.

The treatment of fungal keratitis(FK) remains challenging due to delayed fungal detection and the limited effectiveness of antifungal drugs. Fungal infection can activate both innate and adaptive immune responses in the cornea. Fungi stimulate the production of oxidative stress-related biomarkers and mediate the infiltration of neutrophils, macrophages, and T cells.

View Article and Find Full Text PDF

The rising incidence of fungal infections, compounded by the emergence of severe antifungal resistance, has resulted in an urgent need for innovative antifungal therapies. We developed an antifungal protein-based formulation as a topical antifungal agent by combining an artificial lipidated chitin-binding domain of antifungal chitinase (LysM-lipid) with recently developed ionic liquid-in-oil microemulsion formulations (MEFs). Our findings demonstrated that the lipid moieties attached to LysM and the MEFs effectively disrupted the integrity of the stratum corneum in a mouse skin model, thereby enhancing the skin permeability of the LysM-lipids.

View Article and Find Full Text PDF

Use of isavuconazole in mucormycosis: a systematic review.

BMC Infect Dis

January 2025

Department of Microbiology Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura Sri Lanka, 50008, Sri Lanka.

Background: Mucormycosis is an opportunistic fungal infection which is associated with poor prognosis. Only a few antifungals are available in the arsenal against mucormycosis. The global guidelines for diagnosing and managing mucormycosis recommend high doses of liposomal amphotericin B (LAmB) as the first-line treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!