A gender gap exists in cystic fibrosis (CF). Here we investigate whether plasma microRNA expression profiles differ between the sexes in CF children. MicroRNA expression was quantified in paediatric CF plasma (n = 12; six females; Age range:1-6; Median Age: 3; 9 p.Phe508del homo- or heterozygotes) using TaqMan OpenArray Human miRNA Panels. Principal component analysis indicated differences in male versus female miRNA profiles. The miRNA array analysis revealed two miRNAs which were significantly increased in the female samples (miR-885-5p; fold change (FC):5.07, adjusted p value: 0.026 and miR-193a-5p; FC:2.6, adjusted p value: 0.031), although only miR-885-5p was validated as increased in females using specific qPCR assay (p < 0.0001). Gene ontology analysis of miR-885-5p validated targets identified cell migration, motility and fibrosis as processes potentially affected, with RAC1-mediated signalling featuring significantly. There is a significant increase in miR-885-5p in plasma of females versus males with CF under six years of age.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6981182PMC
http://dx.doi.org/10.1038/s41598-020-57964-1DOI Listing

Publication Analysis

Top Keywords

plasma microrna
8
cystic fibrosis
8
microrna expression
8
microrna levels
4
levels male
4
male female
4
female children
4
children cystic
4
fibrosis gender
4
gender gap
4

Similar Publications

Obesity is considered an important factor contributing to the development of atherosclerosis. Inflammation plays a key role in endothelial dysfunction (ED), an initial stage of the atherosclerotic process. Several microRNAs (miRNAs) may play an important role in the inflammatory process, but there is a lack of information about their participation in the early stages of atherosclerosis development in patients with obesity.

View Article and Find Full Text PDF

This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses.

View Article and Find Full Text PDF

Multiple myeloma is a plasma cell malignancy characterized by an abnormal increase in monoclonal immunoglobulins. Despite significant advances in treatment, some patients progress to more aggressive forms of multiple myeloma, including extramedullary disease or plasma cell leukemia. Although the exact molecular mechanisms are not known, several studies have confirmed the involvement of small extracellular vesicle-enriched microRNAs in multiple myeloma progression.

View Article and Find Full Text PDF

The etiology of rheumatoid arthritis (RA) is multifaceted. One of the hypothesized pathways that results in the progression of RA is regulatory T cell (Treg) dysfunction. The pro-osteoclastogenic and immunogenic characteristics of microribonucleic acid (microRNA)-21 (miR-21) suggest its role in RA progression.

View Article and Find Full Text PDF

Analysis of Circulating Plasma MicroRNA Profile in Low-Grade and High-Grade Glioma - A Cross-Sectional Study.

F1000Res

January 2025

Department of Neurology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Special Region of Yogyakarta, 55281, Indonesia.

Background: Glioma is the second most common type of brain tumor, accounting for 24% of all brain tumor cases. The current diagnostic procedure is through an invasive tissue sampling to obtain histopathological analysis, however, not all patients are able to undergo a high-risk procedure. Circulating microRNAs (miRNAs) are considered as promising biomarkers for glioma due to their sensitivity, specificity, and non-invasive properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!