https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=31980523&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 319805232020052720200615
1091-649011762020Feb11Proceedings of the National Academy of Sciences of the United States of AmericaProc Natl Acad Sci U S AConformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays.293829472938-294710.1073/pnas.1915010117The conformational changes required for activation and K+ conduction in inward-rectifier K+ (Kir) channels are still debated. These structural changes are brought about by lipid binding. It is unclear how this process relates to fast gating or if the intracellular and extracellular regions of the protein are coupled. Here, we examine the structural details of KirBac1.1 reconstituted into both POPC and an activating lipid mixture of 3:2 POPC:POPG (wt/wt). KirBac1.1 is a prokaryotic Kir channel that shares homology with human Kir channels. We establish that KirBac1.1 is in a constitutively active state in POPC:POPG bilayers through the use of real-time fluorescence quenching assays and Förster resonance energy transfer (FRET) distance measurements. Multidimensional solid-state NMR (SSNMR) spectroscopy experiments reveal two different conformers within the transmembrane regions of the protein in this activating lipid environment, which are distinct from the conformation of the channel in POPC bilayers. The differences between these three distinct channel states highlight conformational changes associated with an open activation gate and suggest a unique allosteric pathway that ties the selectivity filter to the activation gate through interactions between both transmembrane helices, the turret, selectivity filter loop, and the pore helix. We also identify specific residues involved in this conformational exchange that are highly conserved among human Kir channels.Copyright © 2020 the Author(s). Published by PNAS.AmaniRezaRDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409.BorcikCollin GCGDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409.KhanNazmul HNHDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409.VersteegDerek BDBDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409.YekefallahMaryamMDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409.DoHoa QHQDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409.CoatsHeather RHRDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409.WylieBenjamin JBJ0000-0001-8183-2762Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409 benjamin.j.wylie@ttu.edu.engR35 GM124979GMNIGMS NIH HHSUnited StatesJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov't20200124
United StatesProc Natl Acad Sci U S A75058760027-84240Bacterial Proteins0KCNJ1 protein, human0Phosphatidylcholines0Phosphatidylglycerols0Potassium Channels, Inwardly Rectifying81490-05-31-palmitoyl-2-oleoylglycero-3-phosphoglycerolRWP5GA015DPotassiumTE895536Y51-palmitoyl-2-oleoylphosphatidylcholineIMBacterial ProteinschemistrygeneticsmetabolismCatalytic DomainFluorescence Resonance Energy TransferKineticsMagnetic Resonance SpectroscopyModels, MolecularPhosphatidylcholineschemistrymetabolismPhosphatidylglycerolschemistrymetabolismPotassiummetabolismPotassium Channels, Inwardly RectifyingchemistrygeneticsmetabolismProtein ConformationProtein DomainsProtein Structure, Secondaryallosterylipid activationmembrane proteinpotassium channelsolid-state NMRThe authors declare no competing interest.
2020126602020528602020126602020124ppublish31980523PMC702217810.1073/pnas.19150101171915010117Clarke O. B., et al. , Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Cell 141, 1018–1029 (2010).20564790Wang S., Lee S. J., Heyman S., Enkvetchakul D., Nichols C. G., Structural rearrangements underlying ligand-gating in Kir channels. Nat. Commun. 3, 617 (2012).PMC427788022233627Wang S., Vafabakhsh R., Borschel W. F., Ha T., Nichols C. G., Structural dynamics of potassium-channel gating revealed by single-molecule FRET. Nat. Struct. Mol. Biol. 23, 31–36 (2016).PMC483321126641713Wang S., et al. , Potassium channel selectivity filter dynamics revealed by single-molecule FRET. Nat. Chem. Biol. 15, 377–383 (2019).PMC643068930833778Coyote-Maestas W., He Y., Myers C. L., Schmidt D., Domain insertion permissibility-guided engineering of allostery in ion channels. Nat. Commun. 10, 290 (2019).PMC633687530655517Lee S. J., et al. , Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids. J. Gen. Physiol. 148, 227–237 (2016).PMC500433627527100Bavro V. N., et al. , Structure of a KirBac potassium channel with an open bundle crossing indicates a mechanism of channel gating. Nat. Struct. Mol. Biol. 19, 158–163 (2012).PMC327247922231399Hibino H., et al. , Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol. Rev. 90, 291–366 (2010).20086079Nichols C. G., Lopatin A. N., Inward rectifier potassium channels. Annu. Rev. Physiol. 59, 171–191 (1997).9074760Abraham M. R., Jahangir A., Alekseev A. E., Terzic A., Channelopathies of inwardly rectifying potassium channels. FASEB J. 13, 1901–1910 (1999).10544173Kuo A., et al. , Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).12738871Nishida M., Cadene M., Chait B. T., MacKinnon R., Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 26, 4005–4015 (2007).PMC199412817703190Hansen S. B., Tao X., MacKinnon R., Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477, 495–498 (2011).PMC332490821874019Zhou Y., Morais-Cabral J. H., Kaufman A., MacKinnon R., Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 A resolution. Nature 414, 43–48 (2001).11689936McCoy J. G., Nimigean C. M., Structural correlates of selectivity and inactivation in potassium channels. Biochim. Biophys. Acta 1818, 272–285 (2012).PMC325393521958666Lopatin A. N., Makhina E. N., Nichols C. G., Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994).7969496Trapp S., Proks P., Tucker S. J., Ashcroft F. M., Molecular analysis of ATP-sensitive K channel gating and implications for channel inhibition by ATP. J. Gen. Physiol. 112, 333–349 (1998).PMC22294139725893Tucker S. J., et al. , Molecular determinants of KATP channel inhibition by ATP. EMBO J. 17, 3290–3296 (1998).PMC11706679628866Yi B. A., Lin Y. F., Jan Y. N., Jan L. Y., Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron 29, 657–667 (2001).11301025Choe H., Sackin H., Palmer L. G., Permeation properties of inward-rectifier potassium channels and their molecular determinants. J. Gen. Physiol. 115, 391–404 (2000).PMC223376210736307Choe H., Sackin H., Palmer L. G., Gating properties of inward-rectifier potassium channels: Effects of permeant ions. J. Membr. Biol. 184, 81–89 (2001).11687881Enkvetchakul D., Loussouarn G., Makhina E., Shyng S. L., Nichols C. G., The kinetic and physical basis of K(ATP) channel gating: Toward a unified molecular understanding. Biophys. J. 78, 2334–2348 (2000).PMC130082410777731Guo L., Kubo Y., Comparison of the open-close kinetics of the cloned inward rectifier K+ channel IRK1 and its point mutant (Q140E) in the pore region. Receptors Channels 5, 273–289 (1998).9666520Proks P., Capener C. E., Jones P., Ashcroft F. M., Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel. J. Gen. Physiol. 118, 341–353 (2001).PMC223369811585848Kuo A., Domene C., Johnson L. N., Doyle D. A., Vénien-Bryan C., Two different conformational states of the KirBac3.1 potassium channel revealed by electron crystallography. Structure 13, 1463–1472 (2005).16216578Enkvetchakul D., et al. , Functional characterization of a prokaryotic Kir channel. J. Biol. Chem. 279, 47076–47080 (2004).PMC862917015448150Cheng W. W., Enkvetchakul D., Nichols C. G., KirBac1.1: It’s an inward rectifying potassium channel. J. Gen. Physiol. 133, 295–305 (2009).PMC265408319204189Domene C., Grottesi A., Sansom M. S., Filter flexibility and distortion in a bacterial inward rectifier K+ channel: Simulation studies of KirBac1.1. Biophys. J. 87, 256–267 (2004).PMC130434815240462Linder T., Wang S., Zangerl-Plessl E. M., Nichols C. G., Stary-Weinzinger A., Molecular dynamics simulations of KirBac1.1 mutants reveal global gating changes of Kir channels. J. Chem. Inf. Model. 55, 814–822 (2015).PMC441503525794351Sadler E. E., Kapanidis A. N., Tucker S. J., Solution-based single-molecule FRET studies of K(+) channel gating in a lipid bilayer. Biophys. J. 110, 2663–2670 (2016).PMC491959327332124Toyama Y., Osawa M., Yokogawa M., Shimada I., NMR method for characterizing microsecond-to-millisecond chemical exchanges utilizing differential multiple-quantum relaxation in high molecular weight proteins. J. Am. Chem. Soc. 138, 2302–2311 (2016).26855064Enkvetchakul D., Jeliazkova I., Bhattacharyya J., Nichols C. G., Control of inward rectifier K channel activity by lipid tethering of cytoplasmic domains. J. Gen. Physiol. 130, 329–334 (2007).PMC215164217698595Cheng W., “From bacteria to human Biophysical studies of inward rectifying potassium channels,” PhD dissertation, Washington University, Saint Louis, MO (2012).Bernèche S., Roux B., Energetics of ion conduction through the K+ channel. Nature 414, 73–77 (2001).11689945Hodgkin A. L., Keynes R. D., Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. 128, 28–60 (1955).PMC136575414368574Hodgkin A. L., Keynes R. D., The potassium permeability of a giant nerve fibre. J. Physiol. 128, 61–88 (1955).PMC136575514368575Su Z., Brown E. C., Wang W., MacKinnon R., Novel cell-free high-throughput screening method for pharmacological tools targeting K+ channels. Proc. Natl. Acad. Sci. U.S.A. 113, 5748–5753 (2016).PMC487853227091997Kozek K. A., et al. , Discovery and characterization of VU0529331, a synthetic small-molecule activator of homomeric G protein-gated, inwardly rectifying, potassium (GIRK) channels. ACS Chem. Neurosci. 10, 358–370 (2019).PMC652865630136838Riegelhaupt P. M., Tibbs G. R., Goldstein P. A., HCN and K2P channels in anesthetic mechanisms research. Methods Enzymol. 602, 391–416 (2018).29588040Pope L., et al. , Protein and chemical determinants of BL-1249 action and selectivity for K2P channels. ACS Chem. Neurosci. 9, 3153–3165 (2018).PMC630290330089357Chen I. S., Kubo Y., Ivermectin and its target molecules: Shared and unique modulation mechanisms of ion channels and receptors by ivermectin. J. Physiol. 596, 1833–1845 (2018).PMC597830229063617Wang W., MacKinnon R., Cryo-EM structure of the open human Ether-à-go-go-related K+ channel hERG. Cell 169, 422–430.e10 (2017).PMC548439128431243Lolicato M., et al. , K2P2.1 (TREK-1)-activator complexes reveal a cryptic selectivity filter binding site. Nature 547, 364–368 (2017).PMC577889128693035Glaaser I. W., Slesinger P. A., Dual activation of neuronal G protein-gated inwardly rectifying potassium (Girk) channels by cholesterol and alcohol. Sci. Rep. 7, 4592 (2017).PMC549685328676630Gill S., et al. , A high-throughput screening assay for NKCC1 cotransporter using nonradioactive rubidium flux technology. Assay Drug Dev. Technol. 15, 167–177 (2017).28631939Dadi P. K., et al. , Selective small molecule activators of TREK-2 channels stimulate dorsal root ganglion c-fiber nociceptor two-pore-domain potassium channel currents and limit calcium influx. ACS Chem. Neurosci. 8, 558–568 (2017).PMC590175527805811Chen I. S., Tateyama M., Fukata Y., Uesugi M., Kubo Y., Ivermectin activates GIRK channels in a PIP2 -dependent, Gβγ -independent manner and an amino acid residue at the slide helix governs the activation. J. Physiol. 595, 5895–5912 (2017).PMC557754228715108Shen P. S., et al. , The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763–773.e11 (2016).PMC605548127768895Garcia M. L., Kaczorowski G. J., Ion channels find a pathway for therapeutic success. Proc. Natl. Acad. Sci. U.S.A. 113, 5472–5474 (2016).PMC487849027147602Wylie B. J., Do H. Q., Borcik C. G., Hardy E. P., Advances in solid-state NMR of membrane proteins. Mol. Phys. 114, 3598–3609 (2016).Cuello L. G., et al. , Structural basis for the coupling between activation and inactivation gates in K(+) channels. Nature 466, 272–275 (2010).PMC303375520613845Cuello L. G., Jogini V., Cortes D. M., Perozo E., Structural mechanism of C-type inactivation in K(+) channels. Nature 466, 203–208 (2010).PMC303374920613835Wylie B. J., Bhate M. P., McDermott A. E., Transmembrane allosteric coupling of the gates in a potassium channel. Proc. Natl. Acad. Sci. U.S.A. 111, 185–190 (2014).PMC389088924344306Xu Y., Bhate M. P., McDermott A. E., Transmembrane allosteric energetics characterization for strong coupling between proton and potassium ion binding in the KcsA channel. Proc. Natl. Acad. Sci. U.S.A. 114, 8788–8793 (2017).PMC556541628768808Xu Y., Zhang D., Rogawski R., Nimigean C. M., McDermott A. E., Identifying coupled clusters of allostery participants through chemical shift perturbations. Proc. Natl. Acad. Sci. U.S.A. 116, 2078–2085 (2019).PMC636981930679272Wang S., Alimi Y., Tong A., Nichols C. G., Enkvetchakul D., Differential roles of blocking ions in KirBac1.1 tetramer stability. J. Biol. Chem. 284, 2854–2860 (2009).PMC263197919033439Enkvetchakul D., Jeliazkova I., Nichols C. G., Direct modulation of Kir channel gating by membrane phosphatidylinositol 4,5-bisphosphate. J. Biol. Chem. 280, 35785–35788 (2005).16144841Borcik C. G., Versteeg D. B., Wylie B. J., An inward-rectifier potassium channel coordinates the properties of biologically derived membranes. Biophys. J. 116, 1701–1718 (2019).PMC651070631010661Bhate M. P., et al. , Preparation of uniformly isotope labeled KcsA for solid state NMR: Expression, purification, reconstitution into liposomes and functional assay. Protein Expr. Purif. 91, 119–124 (2013).PMC380505423916531Bhate M. P., Wylie B. J., Tian L., McDermott A. E., Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J. Mol. Biol. 401, 155–166 (2010).PMC293717720600123van der Cruijsen E. A., et al. , Importance of lipid-pore loop interface for potassium channel structure and function. Proc. Natl. Acad. Sci. U.S.A. 110, 13008–13013 (2013).PMC374084823882077Weingarth M., et al. , Structural determinants of specific lipid binding to potassium channels. J. Am. Chem. Soc. 135, 3983–3988 (2013).23425320Ader C., et al. , Coupling of activation and inactivation gate in a K+-channel: Potassium and ligand sensitivity. EMBO J. 28, 2825–2834 (2009).PMC275002319661921Ader C., et al. , A structural link between inactivation and block of a K+ channel. Nat. Struct. Mol. Biol. 15, 605–612 (2008).18488040Takegoshi K., Nakamura S., Terao T., C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem. Phys. Lett. 344, 631–637 (2001).Baldus M., Petkova A., Herzfeld J., Griffin R., Cross polarization in the tilted frame: Assignment and spectral simplification in heteronuclear spin systems. Mol. Phys. 95, 1197–1207 (1998).Palmer M. R., et al. , Sensitivity of nonuniform sampling NMR. J. Phys. Chem. B 119, 6502–6515 (2015).PMC485771525901905Maciejewski M. W., et al. , NMRbox: A resource for biomolecular NMR computation. Biophys. J. 112, 1529–1534 (2017).PMC540637128445744Shen Y., Delaglio F., Cornilescu G., Bax A., TALOS+: A hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).PMC272699019548092Bhate M. P., McDermott A. E., Protonation state of E71 in KcsA and its role for channel collapse and inactivation. Proc. Natl. Acad. Sci. U.S.A. 109, 15265–15270 (2012).PMC345835122942391Jekhmane S., et al. , Shifts in the selectivity filter dynamics cause modal gating in K+ channels. Nat. Commun. 10, 123 (2019).PMC632860330631074Eichmann C., Frey L., Maslennikov I., Riek R., Probing ion binding in the selectivity filter of the KcsA potassium channel. J. Am. Chem. Soc. 141, 7391–7398 (2019).30973010Brettmann J. B., Urusova D., Tonelli M., Silva J. R., Henzler-Wildman K. A., Role of protein dynamics in ion selectivity and allosteric coupling in the NaK channel. Proc. Natl. Acad. Sci. U.S.A. 112, 15366–15371 (2015).PMC468759826621745Perry M. D., Ng C. A., Vandenberg J. I., Pore helices play a dynamic role as integrators of domain motion during Kv11.1 channel inactivation gating. J. Biol. Chem. 288, 11482–11491 (2013).PMC363085923471968Pages G., et al. , Structure of the pore-helix of the hERG K(+) channel. Eur. Biophys. J. 39, 111–120 (2009).19305991Renart M. L., et al. , Conformational plasticity in the Kcsa potassium channel pore helix revealed by Homo-Fret studies. Sci. Rep. 9, 6215 (2019).PMC647017230996281Sperling L. J., et al. , Solid-state NMR study of a 41 kDa membrane protein complex DsbA/DsbB. J. Phys. Chem. B 117, 6052–6060 (2013).23527473Tang M., et al. , Structure of the disulfide bond generating membrane protein DsbB in the lipid bilayer. J. Mol. Biol. 425, 1670–1682 (2013).PMC367069023416557Delaglio F., et al. , NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).8520220Shen Y., Bax A., SPARTA+: A modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J. Biomol. NMR 48, 13–22 (2010).PMC293551020628786Madeira F., et al. , The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47, W636–W641 (2019).PMC660247930976793Amani R., Backbone 13C, and 15N chemical shift assignments for KirBac1.1. Biological Magnetic Resonance Data Bank. http://www.bmrb.wisc.edu/data_library/summary/index.php?bmrbId=50123. Deposited 19 December 2019.Amani R., Wylie B., KirBac1.1_POPC. Biological Magnetic Resonance Data Bank. http://www.bmrb.wisc.edu/data_library/summary/index.php?bmrbId=50135. Deposited 19 December 2019.