Alternative Splicing in the Nuclear Receptor Superfamily Expands Gene Function to Refine Endo-Xenobiotic Metabolism.

Drug Metab Dispos

Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon (A.J.A., C.B.M., P.L.I.) and United States Army Research Institute for Infectious Disease, Frederick, Maryland (P.L.I.).

Published: April 2020

The human genome encodes 48 nuclear receptor (NR) genes, whose translated products transform chemical signals from endo-xenobiotics into pleotropic RNA transcriptional profiles that refine drug metabolism. This review describes the remarkable diversification of the 48 human NR genes, which are potentially processed into over 1000 distinct mRNA transcripts by alternative splicing (AS). The average human NR expresses ∼21 transcripts per gene and is associated with ∼7000 single nucleotide polymorphisms (SNPs). However, the rate of SNP accumulation does not appear to drive the AS process, highlighting the resilience of NR genes to mutation. Here we summarize the altered tissue distribution/function of well characterized NR splice variants associated with human disease. We also describe a cassette exon visualization pictograph methodology for illustrating the location of modular, cassette exons in genes, which can be skipped in-frame, to facilitate the study of their functional relevance to both drug metabolism and NR evolution. We find cassette exons associated with all of the functional domains of NR genes including the DNA and ligand binding domains. The matrix of inclusion or exclusion for functional domain-encoding cassette exons is extensive and capable of significant alterations in cellular phenotypes that modulate endo-xenobiotic metabolism. Exon inclusion options are differentially distributed across NR subfamilies, suggesting group-specific conservation of resilient functionalities. A deeper understanding of this transcriptional plasticity expands our understanding of how chemical signals are refined and mediated by NR genes. This expanded view of the NR transcriptome informs new models of chemical toxicity, disease diagnostics, and precision-based approaches to personalized medicine. SIGNIFICANCE STATEMENT: This review explores the impact of alternative splicing (AS) on the human nuclear receptor (NR) superfamily and highlights the dramatic expansion of more than 1000 potential transcript variants from 48 individual genes. Xenobiotics are increasingly recognized for their ability to perturb gene splicing events, and here we explore the differential sensitivity of NR genes to AS and chemical exposure. Using the cassette exon visualization pictograph methodology, we have documented the conservation of splice-sensitive, modular, cassette exon domains among the 48 human NR genes, and we discuss how their differential expression profiles may augment cellular resilience to oxidative stress and fine-tune adaptive, metabolic responses to endo-xenobiotic exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.119.089102DOI Listing

Publication Analysis

Top Keywords

alternative splicing
12
nuclear receptor
12
cassette exon
12
cassette exons
12
genes
9
receptor superfamily
8
endo-xenobiotic metabolism
8
chemical signals
8
drug metabolism
8
human genes
8

Similar Publications

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Circular RNA Formation and Degradation Are Not Directed by Universal Pathways.

Int J Mol Sci

January 2025

Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.

Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.

View Article and Find Full Text PDF

Impact of Larval Sertraline Exposure on Alternative Splicing in Neural Tissue of Adult .

Int J Mol Sci

January 2025

Immunology Laboratory (UMF), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla 54090, Mexico.

Sertraline, a selective serotonin reuptake inhibitor (SSRI), is commonly used to treat various psychiatric disorders such as depression and anxiety due to its ability to increase serotonin availability in the brain. Recent findings suggest that sertraline may also influence the expression of genes related to synaptic plasticity and neuronal signaling pathways. Alternative splicing, a process that allows a single gene to produce multiple protein isoforms, plays a crucial role in the regulation of neuronal functions and plasticity.

View Article and Find Full Text PDF

Changes in RNA Splicing: A New Paradigm of Transcriptional Responses to Probiotic Action in the Mammalian Brain.

Microorganisms

January 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.

Elucidating the gene regulatory mechanisms underlying the gut-brain axis is critical for uncovering novel gut-brain interaction pathways and developing therapeutic strategies for gut bacteria-associated neurological disorders. Most studies have primarily investigated how gut bacteria modulate host epigenetics and gene expression; their impact on host alternative splicing, particularly in the brain, remains largely unexplored. Here, we investigated the effects of the gut-associated probiotic Lacidofil on alternative splicing across 10 regions of the rat brain using published RNA-sequencing data.

View Article and Find Full Text PDF

The innate immune response serves as the primary defense against viral infections, with the recognition of viral nucleic acids by pattern recognition receptors (PRRs) initiating antiviral responses. Mitochondrial antiviral-signaling protein (MAVS) acts as a pivotal adaptor protein in the RIG-I pathway. Alternative splicing further diversifies MAVS isoforms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!