In this paper, the urinary bladder cancer diagnostic method which is based on Multi-Layer Perceptron and Laplacian edge detector is presented. The aim of this paper is to investigate the implementation possibility of a simpler method (Multi-Layer Perceptron) alongside commonly used methods, such as Deep Learning Convolutional Neural Networks, for the urinary bladder cancer detection. The dataset used for this research consisted of 1997 images of bladder cancer and 986 images of non-cancer tissue. The results of the conducted research showed that using Multi-Layer Perceptron trained and tested with images pre-processed with Laplacian edge detector are achieving AUC value up to 0.99. When different image sizes are compared it can be seen that the best results are achieved if 50×50 and 100×100 images were used.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.artmed.2019.101746 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!