Neglecting the driver behavioral model in lane-departure-warning systems has taken over as the primary reason for false warnings in human-machine interfaces. We propose a machine learning-based mechanism to identify drivers' unintended lane-departure behaviors, and simultaneously predict the possibility of driver proactive correction after slight departure. First, a deep residual network for driving state feature extraction is established by combining time series sensor data and three serial ReLU residual modules. Based on this feature network, online extreme learning machine is organized to identify a driver's behavior intention, such as unconscious lane-departure and intentional lane-changing. Once the system senses unconscious lane-departure before crossing the outermost warning boundary, the ϵ-greedy LSTM module in shadow mode is roused to verify the chances of driving the vehicle back to the original lane. Only those unconscious lane-departures with no drivers' proactive correction behavior are transferred into the warning module, guaranteeing that the system has a limited false alarm rate. In addition, naturalistic driving data of twenty-one drivers are collected to validate the system performance. Compared with the basic time-to-line-crossing (TLC) method and the TLC-DSPLS method, the proposed warning mechanism shows a large-scale reduction of 12.9% on false alarm rate while maintaining the competitive accuracy rate of about 98.8%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7038345 | PMC |
http://dx.doi.org/10.3390/s20030644 | DOI Listing |
Behav Res Methods
January 2025
School of Psychology, Sport and Health Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK.
There is a long history of experimental research on eyewitness identification, and this typically involves staging a crime for participants to witness and then testing their memory of the "culprit" by administering a lineup of mugshots. We created an Eyewitness Lineup Identity (ELI) database, which includes crime videos and mugshot images of 231 identities. We arranged the mugshots into 6-, 9-, and 12-member lineups, and then we tested the stimuli in an eyewitness experiment.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Ocean Observation and Forecasting, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China.
Tropical cyclones (TCs), particularly those that rapidly intensify (RI), pose a significant threat due to the uncertainty in forecasting them. RI TC periods, which intensify by at least 13 m/s within 24 h, remain challenging to forecast accurately. Existing models achieve a probability of detection (POD) of 82.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Department of Information Engineering (DEI), University of Padova, Via G. Gradenigo 6/B, Padua, 35131, Italy.
Background: Post bariatric hypoglycaemic (PBH) is a late complication of weight loss surgery, characterised by critically low blood glucose levels following meal-induced glycaemic excursions. The disabling consequences of PBH underline the need for the development of a decision support system (DSS) that can warn individuals about upcoming PBH events, thus enabling preventive actions to avoid impending episodes. In view of this, we developed various algorithms based on linear and deep learning models to forecast PBH episodes in the short-term.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada.
Introduction: Patients with bipolar disorder (BD) demonstrate episodic memory deficits, which may be hippocampal-dependent and may be attenuated in lithium responders. Induced pluripotent stem cell-derived CA3 pyramidal cell-like neurons show significant hyperexcitability in lithium-responsive BD patients, while lithium nonresponders show marked variance in hyperexcitability. We hypothesize that this variable excitability will impair episodic memory recall, as assessed by cued retrieval (pattern completion) within a computational model of the hippocampal CA3.
View Article and Find Full Text PDFCogn Neurodyn
December 2025
Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 China.
Seizure prediction based on electroencephalogram (EEG) for people with epilepsy, a common brain disorder worldwide, has great potential for life quality improvement. To alleviate the high degree of heterogeneity among patients, several works have attempted to learn common seizure feature distributions based on the idea of domain adaptation to enhance the generalization ability of the model. However, existing methods ignore the inherent inter-patient discrepancy within the source patients, resulting in disjointed distributions that impede effective domain alignment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!