Despite recent advances in disease management and prevention, heart failure (HF) prevalence is still high. Hypertension, inflammation and oxidative stress are being investigated as important causative processes in HF. L. polysaccharides (LBPs) are widely used for their anti-inflammatory and antioxidant properties. Thus, the aim of the present study was to evaluate the effects of LBPs on inflammation and oxidative stress markers in a pressure overload-induced HF rat model, surgically induced by abdominal aorta banding in Wistar rats (AAB) ( = 28). Also, control rats ( = 10) were subjected to a sham operation. After echocardiographic confirmation of HF (week 24), AAB rats were divided into three groups: rats treated with LBPs for 12 weeks: 100 mg/kg body weight /day (AAB_100, = 9), 200 mg/kg body weight /day (AAB_200, = 7) and no-treatment group (control AAB, = 12). After 12 weeks of treatment with LBPs, the decline of cardiac function was prevented compared to the control AAB rats. Treatment with 200 mg/kg body weight /day LBPs significantly reduced the inflammation as seen by cytokine levels (IL-6 and TNF-α) and the plasma lipid peroxidation, as seen by malondialdehyde levels. These results suggest that LBPs present anti-inflammatory and antioxidant effects with utility in a HF animal model and encourage further investigation of the cardioprotective effects of these polysaccharides.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037103 | PMC |
http://dx.doi.org/10.3390/molecules25030466 | DOI Listing |
J Exp Clin Cancer Res
January 2025
Department of Cardiovascular, Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy.
Background: Bacterial toxins are emerging as promising hallmarks of colorectal cancer (CRC) pathogenesis. In particular, Cytotoxic Necrotizing Factor 1 (CNF1) from E. coli deserves special consideration due to the significantly higher prevalence of this toxin gene in CRC patients with respect to healthy subjects, and to the numerous tumor-promoting effects that have been ascribed to the toxin in vitro.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Reproductive Medicine Center, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
Background: Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproductive and metabolic abnormalities. The aim of this study was to elucidate the effects of Schisandra rubriflora (S. rubriflora) on PCOS and its related mechanisms using network pharmacology, molecular docking and in vitro experiments.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
Ginsenoside Rd (Rd) is a bioactive compound predominantly found in Panax ginseng C.A. Meyer and Panax notoginseng (Burkill) F.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD, USA.
Inflammation-associated perturbations of the gut microbiome are well characterized, but poorly understood. Here, we demonstrate that disparate taxa recapitulate the metabolism of the oxidized sugars glucarate and galactarate, utilizing enzymatically divergent, yet functionally equivalent, gud/gar pathways. The divergent pathway in commensals includes a putative 5-KDG aldolase (GudL) and an uncharacterized ABC transporter (GarABC) that recapitulate the function of their non-homologous counterparts in pathogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!