The consumption of beans has been associated with chronic disease prevention which may be attributed to the polyphenols present in the seed coat and endosperm. However, their bioaccessibility is likely to be limited by interactions with bean matrix components, including starch, protein and fibre. The aim of this project was to evaluate the effect of domestic processing and enzymatic digestion on the bioaccessibility of polyphenols from Borlotti beans () and to test their anti-inflammatory properties in a macrophage cell model. digestion of cooked beans released twenty times more polyphenols (40.4 ± 2.5 mg gallic acid equivalents (GAE)/g) than domestic processing (2.22 ± 0.1 mg GAE/g), with starch digestion contributing to the highest release (30.9 ± 0.75 mg GAE/g). Fluorescence microscopy visualization of isolated bean starch suggests that polyphenols are embedded within the granule structure. LC-MS analysis showed that cooked Borlotti bean contain flavonoids, flavones and hydroxycinnamic acids, and cooked bean extracts exerted moderate anti-inflammatory effects by decreasing mRNA levels of IL1β and iNOS by 25% and 40%, respectively. In conclusion, the bioaccessibility of bean polyphenols is strongly enhanced by starch digestion. These polyphenols may contribute to the health benefits associated with bean consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070432PMC
http://dx.doi.org/10.3390/nu12020295DOI Listing

Publication Analysis

Top Keywords

starch digestion
12
polyphenols borlotti
8
borlotti beans
8
domestic processing
8
polyphenols
7
bean
6
starch
5
digestion enhances
4
bioaccessibility
4
enhances bioaccessibility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!