Voltammetric scan can record the profile of electrochemical active substances in plant tissues. Because the distribution of chemical components in plants is controlled by genes, these profiles can reflect differences at the genetic level in different species. In this study, the voltammetric scan was applied to the investigation of macrophanerophytes taxonomy. All species of Chimonanthus with two exotaxa were deliberately selected due to their controversial infrageneric relationship. Electrode surface modification was excluded in this work to improve the convenience and accuracy of the fingerprint recording process. The dendrogram deduced from the electrochemical fingerprint data suggests that Ch. Zhejiangensis and Ch. grammatus are two groups of Ch. nitens, which may be only the ecotype of Ch. nitens, rather than independent taxonomic species. The small variations between the three species may be due to environmental factors and cannot be used for species formation. In addition, Ch. campanulatus and Ch. Praecox were clustered together with a close relationship.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2020.107455 | DOI Listing |
Materials (Basel)
December 2024
Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
Cyclic voltammetry (CV) can be applied as a reliable method for the determination of chloride ions in a range from several to a couple hundred (about 200) ppm. Since the standard potential of chloride ion/gaseous chlorine is 1.36 V vs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy.
In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].
View Article and Find Full Text PDFSci Adv
December 2024
Department of Chemistry, Texas A&M University, College Station, TX 77845-3255, USA.
Understanding the dynamic spatial and temporal release of neurotransmitters can help resolve long-standing questions related to chemical modulation of neurological circuits. Dopamine modulates function in a range of physiological processes and is key to transmission in addiction and neurological disorders. Studies at subcellular scales promise to help develop a broader understanding of dopamine release, diffusion, and receptor activation and how these processes lead to functional outcomes.
View Article and Find Full Text PDFMikrochim Acta
November 2024
Department of Chemistry, Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Türkiye.
Talanta
March 2025
J. Heyrovsky Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 00 Prague 8, Czech Republic. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!