Objective/background: The most frequently used animal model for human DMD (Duchenne muscular dystrophy) research is the mdx mouse. In both species, characteristic histological changes like inflammation, muscle fiber degeneration and fibrosis are the same, but in contrast to humans, in mdx mice, phases of muscle fiber degeneration are compensated by regeneration processes.

Aim: Therefore, the interest of this study was to evaluate histological features in masticatory muscles after BTX-A injection into the right masseter muscle of wild type and dystrophic (mdx) mice, illustrating de- and regeneration processes induced by this substance.

Material And Methods: The right masseter muscle of 100 days old healthy and mdx mice were selectively paralyzed by a single intramuscular BTX-A injection. Masseter as well as temporal muscle of injection and non-injection side were carefully dissected 21 days and 42 days after injection, respectively, and fiber diameter, cell nuclei position, necrosis and collagen content were analyzed histomorphologically in order to evaluate de- and regeneration processes in these muscles. Statistical analysis was performed using SigmaStat Software and Mann Whitney U-test (significance level: p < 0.05).

Results: At both investigation periods and in both mouse strains fiber diameter was significantly reduced and collagen content was significantly increased in the right injected masseter muscle whereas fiber diameters in mdx mice were much smaller, and these differences were even more apparent at the second investigation period. Necrosis and central located nuclei could generally be found in all mdx mice muscles investigated with an amount of centronucleation exceeding 60%, and a significant increase of necrosis six weeks after injection. In wild type mice central located nuclei could primarily be found in the treated masseter muscle with a portion of 2.7%, and this portion decreased after six weeks, whereas in mdx mice a decrease could also be seen in the non-injected muscles. In contrast, in wild type mice necrosis was not apparent at any time and in all muscles investigated.

Conclusion: From our results it can be concluded that in mdx mice masticatory muscles de- and regeneration processes were extended, triggered by a selective BTX-A injection, or mdx mice at this age, independently of BTX-A treatment, went through another cycle of de- and regeneration as a characteristic of this disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aanat.2020.151464DOI Listing

Publication Analysis

Top Keywords

mdx mice
32
masseter muscle
20
de- regeneration
16
masticatory muscles
12
injection masseter
12
muscle fiber
12
btx-a injection
12
wild type
12
regeneration processes
12
mice
11

Similar Publications

Absence of the structural protein, dystrophin, results in the neuromuscular disorder Duchenne Muscular Dystrophy (DMD). In addition to progressive skeletal muscle dysfunction, this multisystemic disorder can also result in cognitive deficits and behavioural changes that are likely to be consequences of dystrophin loss from central neurons and astrocytes. Dystrophin-deficient mdx mice exhibit decreases in grey matter volume in the hippocampus, the brain region that encodes and consolidates memories, and this is exacerbated with ageing.

View Article and Find Full Text PDF

Striking Cardioprotective Effects of an Adiponectin Receptor Agonist in an Aged Mouse Model of Duchenne Muscular Dystrophy.

Antioxidants (Basel)

December 2024

Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), Avenue Hippocrate 55, 1200 Brussels, Belgium.

Adiponectin (ApN) is a hormone with potent effects on various tissues. We previously demonstrated its ability to counteract Duchenne muscular dystrophy (DMD), a severe muscle disorder. However, its therapeutic use is limited.

View Article and Find Full Text PDF

Although current treatments for Duchenne Muscular Dystrophy (DMD) have proven to be effective in delaying myopathy, there remains a strong need to identify novel targets to develop additional therapies. Mitochondrial dysfunction is an early pathological feature of DMD. A fine balance of mitochondrial dynamics (fission and fusion) is crucial to maintain mitochondrial function and skeletal muscle health.

View Article and Find Full Text PDF

This study aims to use superparamagnetic iron oxide nanoparticles (SPIONs), specifically magnetite (FeO), to deliver deflazacort (DFZ) and ibuprofen (IBU) to Duchenne muscular dystrophy-affected (DMD) mouse muscles using an external magnetic field. The SPIONs are synthesized by the co-precipitation method, and their surfaces are functionalized with L-cysteine to anchor the drugs, considering that the cysteine on the surface of the SPIONs in the solid state dimerizes to form the cystine molecule, creating the FeO-(Cys)-DFZ and FeO-(Cys)-IBU systems for tests. The FeO nanoparticles (NPs) were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and magnetic measurements.

View Article and Find Full Text PDF

Objective: Ca overload of muscle fibers is one of the factors that secondarily aggravate the development of Duchenne muscular dystrophy (DMD). The purpose of this study is to evaluate the effects of the Ca channel modulator 2-aminoethoxydiphenyl borate (APB) on skeletal muscle pathology in dystrophin-deficient mice.

Methods: Mice were randomly divided into six groups: wild type (WT), WT+3 mg/kg APB, WT+10 mg/kg APB, , +3 mg/kg APB, +10 mg/kg APB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!