We investigated the effect of miR-9 on fibroblast-like synoviocytes (FLS) from RA patients and animal arthritis model. The binding of miR-9 to NF-κB1 3'UTR was analyzed by luciferase reporter assay and immunoprecipitation. ChIP assay and luciferase promoter assay were performed to identify the binding of NF-κB1 to RANKL promoter and its activity. FLS were treated with miR-9/anti-miR-9 to evaluate cell proliferation and the expression of RANKL. Therapeutic effect of intra-articular miR-9 was evaluated in type-II collagen-induced arthritis in rats. miR-9 bound to the 3'-UTR of NF-κB1 and downregulated NF-κB1. NF-κB1 bound to RANKL promoter and increased the promoter activity of RANKL. RANKL was downregulated by miR-9. Proliferation of FLS was increased by miR-9 inhibitor. miR-9 dampened experimental arthritis by lowering inflammatory state, reducing RANKL and osteoclasts formation. Our findings revealed miR-9-NF-κB1-RANKL pathway in RA-FLS, further, miR-9 ameliorated inflammatory arthritis in vivo which propose therapeutic implications of miR- 9 in RA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2020.108348DOI Listing

Publication Analysis

Top Keywords

fibroblast-like synoviocytes
8
mir-9
8
rankl promoter
8
promoter activity
8
rankl
6
arthritis
5
nf-κb1
5
microrna-9 ameliorates
4
ameliorates destructive
4
destructive arthritis
4

Similar Publications

The prevalence of rheumatoid arthritis (RA) has sharply increased in recent years, posing a serious threat to human health. RA is characterized as a chronic, multisystem disease with morning stiffness and symmetric small joint pain. However, its fundamental processes are poorly understood.

View Article and Find Full Text PDF

Objective: Fibroblast-like synoviocytes (FLS) are key players in rheumatoid arthritis (RA) by resisting apoptosis via increased autophagy. Elevated synovial aquaporin 1 (AQP1) affects RA FLS behaviors, but its relationship with FLS autophagy is unclear. We aim to clarify that silencing AQP1 inhibits autophagy to exert its anti-RA effects.

View Article and Find Full Text PDF

Matrix-mediated activation of murine fibroblast-like synoviocytes.

Exp Cell Res

January 2025

Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany. Electronic address:

Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation.

View Article and Find Full Text PDF

Gentiopicroside ameliorates synovial inflammation and fibrosis in KOA rats by modulating the HMGB1-mediated PI3K/AKT signaling axis.

Int Immunopharmacol

January 2025

Department of Orthopaedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China; Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China. Electronic address:

Background: Knee osteoarthritis (KOA) is a degenerative joint disease characterized by synovial inflammation and fibrosis. Gentiopicroside (GPS), one of the main active ingredients of Gentiana macrophylla, is widely used in anti-inflammatory and anti-fibrotic therapies. However, the exact mechanism by which GPS treats synovial inflammation and fibrosis in KOA remains unclear.

View Article and Find Full Text PDF

Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!