Glycogen synthase kinase-3β (GSK-3β) is an evolutionarily conserved serine/threonine kinase, functioning in numerous cellular processes including cell proliferation, DNA repair, cell cycle, signaling and metabolic pathways. GSK-3β is implicated in different diseases including inflammation, neurodegenerative disease, diabetes and cancers. GSK-3β is involved in biological processes of tumorigenesis, therefore, it is rational that GSK-3β inhibitors were employed to target malignant tumors. The effects of GSK-3β inhibitors in combination of radiation and chemotherapeutic drugs have been reported in various types of cancers, suggesting GSK-3β would play important roles in cancer treatments. GSK-3β is involved in multiple signal pathway including Wnt/β-catenin, PI3K/PTEN/AKT and Notch. GSK-3β also functions in DNA repair through phosphorylation of DNA repair factors and affecting their binding to chromatin. This review focuses on the molecular mechanism of GSK-3β in DNA repair, special in base excision repair and double-strands break repair, the roles of GSK-3β in inhibition of apoptosis through activation of NF-κB, and the effects of GSK-3β inhibitors on radio- and chemosensitization of various types of cancers. This article is part of a Special Issue entitled: GSK-3 and related kinases in cancer, neurological and other disorders edited by James McCubrey, Agnieszka Gizak and Dariusz Rakus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2020.118659 | DOI Listing |
J Transl Med
January 2025
Department of Radiation Oncology, The Second Affiliated Hospital of Dalian Medical University, No. 467 of Zhongshan Road, Shahekou District, Dalian, 116023, China.
Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.
Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).
Biochim Biophys Acta Rev Cancer
January 2025
Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India. Electronic address:
Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc.
View Article and Find Full Text PDFEnviron Res
January 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China. Electronic address:
Dinotefuran (DIN) is toxic to non-target organisms and accelerates the evolution of antibiotic resistance, which poses a problem for the stable operation of the activated sludge process in wastewater treatment plants (WWTPs). However, the emergence and the transfer mechanism of antibiotic resistance genes (ARGs) in activated sludge systems under DIN stress remains unclear. Thus, in the study, the potential impact of DIN on ARGs and virulence factor genes (VFGs) in aerobic granular sludge (AGS) was investigated in depth using metagenomic binning and functional modules.
View Article and Find Full Text PDFJ Ayurveda Integr Med
January 2025
Centre for Ayurvedic Biology, Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India. Electronic address:
Background: Brain ageing is accompanied by the diminution of neuronal plasticity, which is correlated with the inability to respond to loss of memory, various stress-induced stimuli, and increased risk of neurodegenerative disorders. In the recent past, plant based herbal medicines are of interest over synthetic drugs for therapeutic purposes due to lower side effects. The Indian traditional medicine Ayurveda describes several herbal remedies, such as rasayana (elixirs for rejuvenation), to treat many age-related diseases.
View Article and Find Full Text PDFDNA Repair (Amst)
January 2025
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!