The house cricket, Acheta domesticus L. (Orthoptera: Gryllidae) is one of the most important species of industrialized insects in the United States. Within the past five years the market of cricket powder as a food ingredient has been growing with increasing consumer interest on more sustainable sources of food. However, high labor costs of cricket production and high prices of cricket feed formulations result in cricket powder market prices much higher than other protein-rich food ingredients, making cricket powder only competitive within the novelty food market. In this study new diets formulated using by-products were developed using dietary self-selection followed by regression analysis. Crickets selected among seven different combinations of ingredients. Consumption ratios of food ingredients and by-products were used to determine macro and micro-nutrient intake. Regression analysis was used to determine the individual nutrient intake effect on cricket biomass production. Intake of vitamin C, sterol, manganese, and vitamins B1 and B5 had the most significant impact on live biomass production. Four diets were formulated based on this information and compared with a reference (Patton's 13) and a commercial diet. Although, crickets reared on Patton's diet 13 produced the most dry-weight biomass and developed the fastest, diet 4 (consisting of 92% by-products) generated the most profit (with a cost of $0.39 USD per kg) after an economic analysis that did not include the commercial formulation. Dry-weight biomass production was not significantly different among the four new diets and the commercial diet. This study demonstrated the value of dietary self-selection studies in developing oligidic insect diets and in studies of insect nutrition. This is the first such study involving farmed edible crickets and agricultural by-products. Four new cricket diet formulations contain between 62 and 92% agricultural by-products are included.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6980616 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227400 | PLOS |
Am J Clin Nutr
January 2025
Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; INQUIS Clinical Research, Inc., Toronto, Ontario, Canada. Electronic address:
Int J Biol Macromol
January 2025
School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
Nucleosides and polysaccharides are the main bioactive ingredients of Cordyceps genus. Nucleosides shows significant differences in different Cordyceps species. However, the differences of polysaccharides have not been decoded.
View Article and Find Full Text PDFFood Chem
December 2024
School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, China. Electronic address:
The large-scale production of glycyrrhizic acid inevitably generates a large amount of licorice residues waste, which contains a wealth of active ingredients, especially glabridin, a natural preservative. However, traditional extraction methods for glabridin are often limited by bottlenecks such as time-consuming, inefficient, and insufficient specificity. To overcome these challenges, this study innovatively introduced 2-phenylimidazole as a functional monomer by computer simulations and successfully developed magnetic molecularly imprinted polymers (MMIPs) for glabridin.
View Article and Find Full Text PDFCurr Drug Saf
January 2025
Department of Chemistry, K J Somaiya College of Science and Commerce, Vidyavihar, Mumbai-77, India.
The presence of N-nitrosamine impurities in pharmaceutical products is well known. In 2019, it resulted in drug recall by the Food and Drug Administration (FDA). Soon, several groups identified the presence of many N-nitrosamines (NAs) in various Active Pharmaceutical Ingredients (APIs) and drug formulations worldwide.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Nakhon Pathom, 73170, Salaya, Thailand.
Purpose Of Review: This review delves comprehensively into the nutritional profiles and diverse biological activities of different berries. So far 19 different types of berries have been identified for human consumption and studied for their nutritional and biological activities. Among them, acai berry, blueberry, blackberry, black currant, boysenberry, and bilberry have been summarized in this review (Part I).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!