A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Band Offsets at κ-([Al,In]Ga)O/MgO Interfaces. | LitMetric

Conduction and valence band offsets are among the most crucial material parameters for semiconductor heterostructure device design, such as for high-electron mobility transistors or quantum well infrared photodetectors (QWIP). Because of its expected high spontaneous electrical polarization and the possibility of polarization doping at heterointerfaces similar to the AlGaN/InGaN/GaN system, the metastable orthorhombic κ-phase of GaO and its indium and aluminum alloy systems are a promising alternative for such device applications. However, respective band offsets to any dielectric are unknown, as well as the evolution of the bands within the alloy systems. We report on the valence and conduction band offsets of orthorhombic κ-(AlGa)O and κ-(InGa)O thin films to MgO as reference dielectric by X-ray photoelectron spectroscopy. The thin films with compositions ≤ 0.27 and ≤ 0.55 were grown by pulsed laser deposition utilizing tin-doped and radially segmented targets. The determined band alignments reveal the formation of a type I heterojunction to MgO for all compositions with conduction band offsets of at least 1.4 eV, providing excellent electron confinement. Only low valence band offsets with a maximum of ∼300 meV were observed. Nevertheless, this renders MgO as a promising gate dielectric for metal-oxide-semiconductor transistors in the orthorhombic modification. We further found that the conduction band offsets in the alloy systems are mainly determined by the evolution of the band gaps, which can be tuned by the composition in a wide range between 4.1 and 6.2 eV, because the energy position of the valence band maximum remains almost constant over the complete composition range investigated. Therefore, tunable conduction band offsets of up to 1.1 eV within the alloy systems allow for subniveau transition energies in (AlGax)O/(InGa)O/(AlGa)O quantum wells from the infrared to the visible regime, which are promising for application in QWIPs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b21128DOI Listing

Publication Analysis

Top Keywords

band offsets
32
alloy systems
16
conduction band
16
valence band
12
band
11
thin films
8
offsets alloy
8
offsets
7
conduction
5
offsets κ-[alin]gao/mgo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!