Drosophila suzukii (Matsumura) is a vinegar fly species that originates from Eastern Asia and has spread throughout Europe and the Americas since its initial detection in United States in 2008. Its relatively large, sclerotized, and serrated ovipositor enables the ability to penetrate ripening fruits, providing a protected environment for its egg and larval stages. Because the mechanism of oviposition site selection of D. suzukii is a matter of hypothesis, the aim of the present study was to elucidate behavioral and chemical aspects of short-range ovipositional site selection within the context of D. suzukii reproductive biology. The preference of D. suzukii to lay eggs on artificially pierced, previously infested, or intact fruits was tested. Video recordings and photographic evidence documented the release of an anal secretion over the fruit surface near the oviposition sites. Gas chromatographic analysis revealed the presence of 11 compounds detected only on the skin of egg-infested berries. Electroantennographic experiments with both sexes of D. suzukii highlighted the importance of six volatile compounds: methyl myristate, methyl palmitate, myristic acid, lauric acid, palmitic acid, and palmitoleic acid. Finally, a synthetic blend composed of the six compounds in a ratio similar to that found on the skin of egg-infested berries increased the oviposition rate of conspecific females. Data from our work suggest that the identified volatiles are cues for reproductive site selection. We discuss how these oviposition cues may affect the fitness of D. suzukii. The knowledge gained from this study may accelerate establishment of control strategies based on the interference and disruption of D. suzukii communication during the oviposition processes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ee/nvaa005DOI Listing

Publication Analysis

Top Keywords

site selection
16
reproductive site
8
suzukii
8
drosophila suzukii
8
skin egg-infested
8
egg-infested berries
8
oviposition
6
selection
4
selection evidence
4
evidence oviposition
4

Similar Publications

β-Addition products are common in conjugate addition reactions consisting of α,β-unsaturated carbonyl compounds. Here, we are reporting an uncommon α-addition product as a major product in the thioacetic acid conjugate addition reaction on a peptide consisting of ()-α,β-unsaturated γ-amino acids. In addition, we observed highly diastereoselective β-addition products from the thiophenol and thioethanol conjugate addition reaction on peptides.

View Article and Find Full Text PDF

Background: Trunk reconstruction following sarcoma excision involves significant defects. Pedicled and free latissimus dorsi myocutaneous flap (LDMF) reconstruction is commonly employed for thoracic defects; however, skin paddle design is limited to 10-12 cm to achieve primary donor closure. Paucity of data exists regarding the utility of V-Y advancement of LDMF, previously described for moderately sized thoracic defects.

View Article and Find Full Text PDF

(L.) Sw. is a valuable ornamental plant in the genus , family Orchidaceae, with high economic and ecological significance.

View Article and Find Full Text PDF

"Pure Fat Flap"-Perforator-based Adiposal Layer Only Flap for Lateral Ankle Reconstruction.

Arch Plast Surg

January 2025

Department of Plastic and Reconstructive Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

Lateral ankle soft tissue defects pose challenges, especially in cases due to chronic pressure from cross-legged sitting, which usually present with a large dead space, small skin opening that often accompanies an open joint. Traditional reconstruction methods using fasciocutaneous flaps may result in donor site morbidity such as delayed wound healing or nerve injury. In this article, we present a case of diabetes-related lateral ankle defect successfully treated using adiposal layer only flap, also known as pure fat flap.

View Article and Find Full Text PDF

Background: Microfracture drilling is a surgical technique that involves creating multiple perforations in areas of cartilage defects to recruit stem cells from the bone marrow, thereby promoting cartilage regeneration in the knee joint. Increasing the exposed bone marrow surface area (more holes in the same area) can enhance stem cell outflow. However, when the exposed area is large, it may affect the mechanical strength of the bone at the site of the cartilage defect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!