Background: Medicinal phytochemistry involving UPLC-DAD in an exhaustive analysis involving quantification of eight commercially important phytochemicals viz. syringin, cordifolioside A, magnoflorine, tinocordiside, palmatine, 20β-hydroxyecdysone, L-tetrahydropalmatine and berberine has been done in 143 accessions from eight states and the union territories of Delhi and Jammu & Kashmir of India representing three different ploidy levels viz. diploid (2x), triploid (3x) and synthetic tetraploid (4x). The study was done to assess the effect of sex, ploidy level and ecogeography on the expression level of secondary metabolites in stems of dioecious, medicinally important shrub Tinospora cordifolia.
Methods: Two different UPLC-DAD methods were used for the quantification of eight selected phytochemicals from the alcoholic stem extracts of T. cordifolia accessions. The Waters Acquity UPLC system hyphenated to the QTOF micromass system, equipped with PDA and ESI-Q-TOF detectors was utilized for the quantitative analysis, Mass Lynx v 4.0 software was used for data analysis.
Results: Significant quantitative changes were observed in the analysed secondary metabolites among different accessions of T. cordifolia. The triploid (3x) cytotypes revealed higher amounts of seven out of eight analysed secondary metabolites than diploids and only 20β-hydroxyecdysone was observed to be present in significantly higher amount in diploid cytotypes. Further, at the tetraploid level, novel induced colchiploid (synthetic 4x) genotypes revealed increase in the yield of all of the analysed eight phytochemicals than their respective diploid counterparts. The quantity of active principles in tetraploid cytotypes were also higher than the average triploid levels at multiple locations in five out of eight tested phytochemicals, indicating the influence of ploidy on expression levels of secondary metabolites in T. cordifolia. Additionally, at each of the three ploidy levels (2x, 3x and synthetic 4x), a significant sex specificity could be observed in the expression levels of active principles, with female sex outperforming the male in the content of some phytochemicals, while others getting overexpressed in the male sex. The manifestation of diverse ecogeographies on secondary metabolism was observed in the form of identification of high yielding accessions from the states of Madhya Pradesh, Delhi and Himachal Pradesh and the Union territory of Jammu & Kashmir. Two triploid female accessions that contained approximately two- to eight fold higher amounts of five out of the eight analysed phytochemicals have been identified as superior elites from the wild from the states of Delhi and Madhya Pradesh.
Conclusion: The paper shows the first observations of ploidy specificity along with subtle sex and ecogeography influence on the expression levels of secondary metabolome in T. cordifolia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1568026620666200124105027 | DOI Listing |
Biosci Biotechnol Biochem
December 2024
Faculty of Science and Technology, Keio University, Yokohama, Japan.
Most actinomycetes and fungi have a multitude of silent biosynthetic genes whose activation could lead to the production of new natural products. Our group recently designed and used a co-culture method to isolate new natural products, based on the idea that pathogens might produce immune suppressors to avoid attack by immune cells. Here, we searched for compounds produced by the co-culture of immune cells with pathogenic fungi isolated from clinical specimens.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Key Laboratory of Biology and Genetic Improvement of Oil Crops of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
Black oilseed crops are rich in diverse phenolic compounds and have excellent antioxidant activities, as reported in traditional Chinese medicine. Testa (seed coat) and peeled seeds (cotyledon, embryo, and other structures) are the seed's crucial components, contributing to the variation in phytonutrient, phenol content, bioactive component, and protective and pharmacological effects. However, comprehensive and comparative information on total phenol, flavonoid, antioxidant, and metabolic profiles in black seed testa and peeled sesame, soybean, peanut, and rapeseed seeds is rare.
View Article and Find Full Text PDFFront Microbiol
December 2024
West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
Background: Numerous studies have demonstrated that is closely associated with human health. These bacteria colonize the mucus layer of the gastrointestinal tract and utilize mucin as their sole source of carbon and nitrogen. spp.
View Article and Find Full Text PDFBMC Genomics
December 2024
Institut Teknologi Bandung, School of Life Sciences and Technology, Bandung, West Java, Indonesia.
Background: The marine environment boasts distinctive physical, chemical, and biological characteristics. While numerous studies have delved into the microbial ecology and biological potential of the marine environment, exploration of genetically encoded, deep-sea sourced secondary metabolites remains scarce. This study endeavors to investigate marine bioproducts derived from deep-sea water samples at a depth of 1,000 m in the Java Trench, Indonesia, utilizing both culture-dependent and whole-genome sequencing methods.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Polytechnic School, University of Vale do Itajaí (Univali), Itajaí, SC 88302-202, Brazil.
Background: Enhanced biological phosphorus removal (EBPR) systems utilize phosphorus-accumulating organisms (PAOs) to remove phosphorus from wastewater since excessive phosphorus in water bodies can lead to eutrophication. This study aimed to characterize a newly isolated PAO strain for its potential application in EBPR systems and to screen for additional biotechnological potential. Here, sequencing allowed for genomic analysis, identifying the genes and molecules involved, and exploring other potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!