AI Article Synopsis

  • The study focuses on how endoplasmic reticulum (ER) stress affects the expression of the multidrug-resistance protein (MRP) 2 in liver cells and its role in acute liver injury.
  • Researchers used mouse models exposed to carbon tetrachloride (CCl4) and thapsigargin (TG) to demonstrate that both substances significantly induced ER stress, increased MRP2 expression, and activated NF-κB signaling.
  • Inhibiting ER stress and NF-κB pathways reduced MRP2 expression and ER stress levels, suggesting that MRP2 serves as a protective response during liver injury by mitigating ER stress and associated cell damage.

Article Abstract

Background: Multidrug-resistance protein (MRP) 2 is a key membrane transporter that is expressed on hepatocytes and regulated by nuclear factor kappa B (NF-κB). Interestingly, endoplasmic reticulum (ER) stress is closely associated with liver injury and the activation of NF-κB signaling.

Objective: Here, we investigated the impact of ER stress on MRP2 expression and the functional involvement of MRP2 in acute liver injury.

Methods: ER stress, MRP2 expression, and hepatocyte injury were analyzed in a carbon tetrachloride (CCl4)-induced mouse model of acute liver injury and in a thapsigargin (TG)-induced model of ER stress.

Results: CCl4 and TG induced significant ER stress, MRP2 protein expression and NF- κB activation in mice and LO2 cells (P < 0.05). Pretreatment with ER stress inhibitor 4- phenyl butyric acid (PBA) significantly mitigated CCl4 and TG-induced ER stress and MRP2 protein expression (P < 0.05). Moreover, pretreatment with pyrrolidine dithiocarbamic acid (PDTC; NF-κB inhibitor) significantly inhibited CCl4-induced NF-κB activation and reduced MRP2 protein expression (1±0.097 vs. 0.623±0.054; P < 0.05). Furthermore, hepatic downregulation of MRP2 expression significantly increased CCl4- induced ER stress, apoptosis, and liver injury.

Conclusion: ER stress enhances intrahepatic MRP2 protein expression by activating NF-κB. This increase in MRP2 expression mitigates ER stress and acute liver injury.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1566524020666200124102411DOI Listing

Publication Analysis

Top Keywords

protein expression
20
acute liver
16
liver injury
16
stress mrp2
16
mrp2 expression
16
mrp2 protein
16
stress
10
expression
9
mrp2
9
endoplasmic reticulum
8

Similar Publications

Backgrounds And Aims: CD8+T cells are crucially associated with the fight against hepatitis B virus (HBV) infection. CD161 has been shown to express remarkably on HCV-specific CD8+T cells. However, the accurate function of CD161+CD8+T cells in HBV immunity or pathogenesis remains undetermined.

View Article and Find Full Text PDF

Voltage-dependent anion channel 1 (VDAC1) is a key protein in cellular metabolism and apoptosis. Here, we present a protocol to express and purify milligram amounts of recombinant VDAC1 in Escherichia coli. We detail steps for a fluorescence polarization-based high-throughput screening assay using NADH displacement, along with procedures for thermostability, fluorescence polarization, and X-ray crystallography.

View Article and Find Full Text PDF

The elimination of superfluous neurons via apoptosis and subsequent glial phagocytosis is crucial for the development of the central nervous system (CNS). In Drosophila, two glial phagocytic receptors, six-microns-under (SIMU) and Draper, mediate the phagocytosis of apoptotic neurons during embryogenesis. However, in simu;draper double-mutant embryos, some apoptotic neurons are still engulfed by the glia, suggesting the involvement of additional receptors.

View Article and Find Full Text PDF

Cadmium (Cd) is a toxic heavy metal which induces vascular disorders. Previous studies suggest that Cd in the bloodstream affects vascular endothelial cells (ECs), potentially contributing to vascular-related diseases. However, the molecular mechanisms of effects of Cd on ECs remain poorly understood.

View Article and Find Full Text PDF

Structural and Functional Glycosylation of the Abdala COVID-19 Vaccine.

Glycobiology

January 2025

Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, OX1 3QU, United Kingdom.

Abdala is a COVID-19 vaccine produced in Pichia pastoris and is based on the receptor-binding domain (RBD) of the SARS-CoV-2 spike. Abdala is currently approved for use in multiple countries with clinical trials confirming its safety and efficacy in preventing severe illness and death. Although P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!