Plant polysaccharides gained extended scientific attention for their immunomodulatory effect. However, few scientific studies structurally defined polysaccharides in relation to their biological modifier response. Therefore, the study explored the effect of structurally identified isolated macromolecules from against cytokine modulation (interferon [IFN-], interleukins [IL-2 and IL-12], and tumor necrosis factor [TNF-]) . The structures were elucidated by GC, GPC, FT-IR spectroscopy, 1D NMR, COSY, HMBC, and HSQC. Two acetylated glucomannans (AANP4 and AAAP6), one deoxy-glucogalactan (AANP5), and one deoxy-N-acetyl-[1-4]-galactosamine (AANP2) were isolated. The results showed significant induction for all cytokines and the most potent component was AAAP6; acetylated phenolic glucomannan with a (1 → 3)-linked glucose-mannose and (1 → 4)-linked mannose backbone, which stimulated IL-12 by more than 10-fold compared with phytohemagglutinin (positive control). In conclusion, polysaccharides could be a landmark for development of effective immunotherapeutics against cancer and chronic inflammatory conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/jmf.2019.0229 | DOI Listing |
ACS Nano
January 2025
Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China.
Knowledge of localized strain at the micrometer scale is essential for tailoring the electrical and mechanical properties of ongoing thinning of crystal silicon (c-Si) solar cells. Thinning c-Si wafers below 110 m are susceptible to cracking in manufacturing due to the nonuniform stress distribution at a micrometer region, necessitating a rigorous technique to reveal the localized stress distribution correlating with its device electrical output. In this context, a Raman microscopy integrated with a photovoltage mapping setup with high resolution to the submicrometer scale is developed to acquire correlative Raman-voltage of the localized physical properties at the microcracks on the rear side of c-Si solar cells.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Metal nanoclusters (NCs), owing to their atomic precision and unique molecule-like properties, have gained widespread attention for applications ranging from catalysis to bioimaging. In recent years, proteins, with their hierarchical structures and diverse functionalities, have emerged as good candidates for functionalizing metal NCs, rendering metal NC-protein conjugates with combined and even synergistically enhanced properties featured by both components. In this Perspective, we explore key questions regarding why proteins serve as complementary partners for metal NCs, the methodologies available for conjugating proteins with metal NCs, and the characterization techniques necessary to elucidate the structures and interactions within this emerging bionano system.
View Article and Find Full Text PDFJ Org Chem
January 2025
Faculty of Chemistry and Center for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany.
Spin labels based on Gd complexes are important tools for the elucidation of the structure, dynamics and interaction of biomolecules by electron paramagnetic resonance (EPR) spectroscopy. Their EPR spectroscopic properties line width and relaxation times influence their performance in a particular application. To be able to apply a complex well-suited for a specific application, a set of Gd complexes with different EPR spectroscopic properties ready-made for spin labeling will be highly useful.
View Article and Find Full Text PDFPLoS One
January 2025
Laboratory of Functional Genomics and Proteomics, Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.
The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.
View Article and Find Full Text PDFJ Med Chem
January 2025
Experimental Drug Development Centre, Chromos, Agency for Science, Technology and Research, 10 Biopolis Road, #05-01, Singapore 138670.
The discovery of molecular glues has made significant strides, unlocking new avenues for targeted protein degradation as a therapeutic strategy, thereby expanding the scope of drug discovery into territories previously considered undruggable. Pioneering molecules like thalidomide and its derivatives have paved the way for the development of small molecules that can induce specific protein degradation by hijacking the cellular ubiquitin-proteasome system. Recent advancements have focused on expanding the range of E3 ligases and target proteins that can be modulated by molecular glues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!