A study is presented of the irradiation of cancerous cervical cell line HeLa loaded with a platinum salt, betamethasone and deoxyglucose. The presence of the platinum increases the free-radical concentration and augments the cell death rate, whereas betamethasone or deoxyglucose induces radiosensitization by the alteration of metabolic pathways. Two by two combinations of these chemicals are made to investigate the possible benefit when two radiosensitizers are present. A model is proposed to understand the results of the presence of two modifying agents on the dose effects. The cells were incubated for 6 h in the presence of the following molecules: dichloro terpyridine platinum, concentration  = 350 μM, betamethasone and deoxyglucose with concentrations of  = 0.2 μM and  = 6 mM, respectively. The cells were subsequently irradiated by carbon C ion 290 MeV/amu up to a dose of 2.5 Gy, under atmospheric conditions. The presence of the platinum salt or bethamethasone augments the cell death rate. The combination of betamethasone with the platinum salt also increases the cell death rate, but less than for the platinum salt alone. The explanation is that any radiosensitizer also behaves as a scavenger of free radicals. This dual behavior should be considered in any optimization of the design of radiosensitizers when different ionizing particles are used.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09553002.2020.1721594DOI Listing

Publication Analysis

Top Keywords

platinum salt
16
betamethasone deoxyglucose
12
cell death
12
death rate
12
free radicals
8
presence platinum
8
augments cell
8
platinum
6
combination agents
4
agents modifying
4

Similar Publications

One-step high-pressure and high-temperature direct aqueous mineral carbonation of tailings derived from mining of Platinum Group Metals in South Africa requires a fundamental understanding of the reactivity of the most dominant mineral phases, i.e. pyroxene and plagioclase (66 wt.

View Article and Find Full Text PDF

Directed assembly of abiotic catalysts onto biological redox protein frameworks is of interest as an approach for the synthesis of biohybrid catalysts that combine features of both synthetic and biological materials. In this report, we provide a multiscale characterization of the platinum nanoparticle (NP) hydrogen-evolving catalysts that are assembled by light-driven reductive precipitation of platinum from an aqueous salt solution onto the photosystem I protein (PSI), isolated from cyanobacteria as trimeric PSI. The resulting PSI-NP assemblies were analyzed using a combination of X-ray energy-dispersive spectroscopy (XEDS), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), small-angle X-ray scattering (SAXS), and high-energy X-ray scattering with atomic pair distribution function (PDF) analyses.

View Article and Find Full Text PDF

Introduction: Alterations in homologous recombination repair (HRR) genes occur in 20%-30% of men with metastatic castration-resistant prostate cancer (mCRPC) which may increase sensitivity to platinum chemotherapy. Specifically, exceptional responses to platinum chemotherapy have been reported among patients with BRCA mutations. This study aimed to evaluate the efficacy of platinum chemotherapy in patients with mCRPC with and without HRR.

View Article and Find Full Text PDF

Construction of Cisplatin-18-Crown-6 Complexes Through Supramolecular Chemistry to Improve Solubility, Stability, and Antitumor Activity.

Int J Mol Sci

December 2024

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China.

Cisplatin (DDP), a platinum-chelated compound renowned for its antitumor activity, is often utilized in cancer therapy. However, its real-world clinical efficacy is compromised by poor solubility and low stability, which impedes wider clinical application. Our study aimed to address these limitations of DDP through host-guest supramolecular chemistry approaches.

View Article and Find Full Text PDF

Herein, we propose magnetic nanocomposites as a powerful new catalyst for organic pollutant reduction. Polypyrrole (PPy) was synthesized in situ within the semi-interpenetrating alginate (Alg)/gelatin (Ge) network in presence of α-FeO as encapsulating matrix and inorganic filler, respectively. The polymeric matrix can act as bifunctional agent such as a binder and stabilizer to improve nanocatalyst stability while preserving their catalytic/magnetic performances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!