Ultrafast Transient Spectroscopy of Trans-Polyacetylene in the Midinfrared Spectral Range.

Phys Rev Lett

Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA.

Published: January 2020

Trans-polyacetylene [t-(CH)_{x}] possesses twofold ground state degeneracy. Using the Su-Schrieffer-Heeger Hamiltonian, scientists predicted charged solitons to be the primary photoexcitations in t-(CH)_{x}; this prediction, however, has led to sharp debate. To resolve this saga, we use subpicosecond transient photomodulation spectroscopy in the mid-IR spectral range (0.1-1.5 eV) in neat t-(CH)_{x} thin films. We show that odd-parity singlet excitons are the primary photoexcitations in t-(CH)_{x}, similar to many other nondegenerate π-conjugated polymers. The exciton transitions are characterized by two photoinduced absorption (PA) bands at 0.38 and 0.6 eV, and an associated photoluminescence band at ∼1.5  eV having similar polarization memory. The primary excitons undergo internal conversion within ∼100  fs to an even-parity (dark) singlet exciton with a PA band at ∼1.4  eV. We also find ultrafast photogeneration of charge polarons when pumping deep into the polymer continuum band, which are characterized by two other PA bands in the mid-IR and associated photoinduced IR vibrational modes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.017401DOI Listing

Publication Analysis

Top Keywords

spectral range
8
primary photoexcitations
8
photoexcitations t-ch_{x}
8
ultrafast transient
4
transient spectroscopy
4
spectroscopy trans-polyacetylene
4
trans-polyacetylene midinfrared
4
midinfrared spectral
4
range trans-polyacetylene
4
trans-polyacetylene [t-ch_{x}]
4

Similar Publications

The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species.

View Article and Find Full Text PDF

Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.

View Article and Find Full Text PDF

This study focuses on the composition and sources of dissolved organic matter (DOM) in the Fancun Reservoir, located in Ningguo City, Anhui Province, China. The investigation was conducted by analyzing the spectral characteristics of DOM using UV-Vis absorption spectra and fluorescence spectroscopy. The humic substances were dominated by fulvic acid, with an average DOM concentration of 30.

View Article and Find Full Text PDF

The Simons Observatory (SO) is a cosmic microwave background (CMB) experiment located in the Atacama Desert in Chile that will make precise temperature and polarization measurements over six spectral bands ranging from 27 to 285 GHz. Three small aperture telescopes (SATs) and one large aperture telescope (LAT) will house 60,000 detectors and cover angular scales between one arcminute and tens of degrees. We present the performance of the dichroic, low-frequency (LF) lenslet-coupled sinuous antenna transition-edge sensor (TES) bolometer arrays with bands centered at 27 and 39 GHz.

View Article and Find Full Text PDF

Short-Wave Infrared Optoelectronics with Colloidal CdHgSe/ZnCdS Core/Shell Nanoplatelets.

ACS Photonics

January 2025

Photonic Nanomaterials, Istituto Italiano di Tecnologia, 16163 Genova, Italy.

Colloidal semiconductor nanocrystals (NCs) are an efficient and cost-effective class of nanomaterials for optoelectronic applications. Advancements in NC-based optoelectronic devices have resulted from progress in synthetic chemistry, adjustable surface properties, and optimized device architectures. Semiconductor nanoplatelets (NPLs) stand out among other NCs due to their precise growth control, yielding uniform thickness with submonolayer roughness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!