While antibody-drug conjugates (ADCs) are advancing through clinical testing and receiving new marketing approvals, improvements to the technology continue to be developed in both academic and industrial laboratories. Among the key ADC attributes that can be improved upon with new technology are their biodistribution and pharmacokinetic properties. During the course of ADC development, it has become apparent that conjugation of drugs to the surface of a monoclonal antibody can alter its physicochemical characteristics in a manner that results in increased nonspecific interactions and more rapid elimination from plasma. Researchers in the field have typically relied upon in vivo studies in preclinical models to understand how a particular ADC chemistry will impact these biological characteristics. In previous work, we described how animal studies have revealed a relationship between ADC hydrophobicity, pharmacokinetics, and nonspecific hepatic clearance, particularly by sinusoidal endothelium and Kupffer cells. Here, we describe a fluorescence-based assay using cultured Kupffer cells to recapitulate the nonspecific interactions that lead to ADC clearance in an in vitro setting with the aim of developing a tool for predicting the pharmacokinetics of novel ADC designs. Output from this assay has demonstrated an excellent correlation with plasma clearance for a series of closely related ADCs bearing discrete PEG chains of varying length and has proven useful in interrogating the mechanism of the interactions between ADCs and Kupffer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.9b00991 | DOI Listing |
ACS Biomater Sci Eng
December 2024
Department of Biomedical Engineering, University of North Texas, Denton, Texas 76207-7102, United States.
Liver tissues, composed of hepatocytes, cholangiocytes, stellate cells, Kupffer cells, and sinusoidal endothelial cells, are differentiated from endodermal and mesodermal germ layers. By mimicking the developmental process of the liver, various differentiation protocols have been published to generate human liver organoids (HLOs) in vitro using induced pluripotent stem cells (iPSCs). However, HLOs derived solely from the endodermal germ layer often encounter technical hurdles such as insufficient maturity and functionality, limiting their utility for disease modeling and hepatotoxicity assays.
View Article and Find Full Text PDFCell Mol Life Sci
December 2024
Department of Internal Medicine and Gastroenterology, Internistisches Klinikum München Süd, Am Isarkanal 36, Munich, Germany.
Bacterial infections are prevalent and the major cause of morbidity and mortality in cirrhosis. Activation of human Kupffer cells (HKCs) from livers is essential for human innate immunity. Cytosolic phospholipase A2 (cPLA2) plays a crucial role in the control and balance of innate immune and inflammatory reactions.
View Article and Find Full Text PDFJ Exp Med
February 2025
School of Basic Medical Sciences, Center for Infection Biology, Tsinghua University, Beijing, China.
The interception of blood-borne bacteria in the liver defines the outcomes of invasive bacterial infections, but the mechanisms of this antibacterial immunity are not fully understood. This study shows that natural antibodies (nAbs) to capsules enable liver macrophage Kupffer cells (KCs) to rapidly capture and kill blood-borne encapsulated bacteria in mice. Affinity pulldown with serotype-10A capsular polysaccharides (CPS10A) of Streptococcus pneumoniae (Spn10A) led to the identification of CPS10A-binding nAbs in serum.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
November 2024
Biology Department, College of Education for Pure Sciences, University of Anbar, Iraq.
This study aimed to evaluate the therapeutic effects of B6 in rats experimentally intoxicated by benzopyrene. Twenty-eight Male Sprague Dawley (white Swiss) rats weighing 170-210 g and 3-4 months old were utilized in this examination. Rats were divided into 4 control groups (G1), B[a]P 2 pmol/μL (G2), B6 only once per 2 days for a full month at 1000 mcg (15 dose per month) (G3), B6 + B[a]P (G4).
View Article and Find Full Text PDFClin Pharmacol Ther
December 2024
Incyte Corporation, Wilmington, Delaware, USA.
Axatilimab, a high-affinity humanized immunoglobulin G4 monoclonal antibody against colony-stimulating factor 1 receptor (CSF-1R), is approved for the treatment of chronic graft-versus-host disease (cGVHD), and under investigation for idiopathic pulmonary fibrosis and solid tumors. The population pharmacokinetics (PK) and pharmacodynamics (PD) of axatilimab were characterized in healthy participants and patients with solid tumors or cGVHD using data from four clinical studies with 325 participants, including 278 patients with cGVHD. The model structure reflected the mechanism of action of axatilimab: blocking CSF-1R signaling with axatilimab reduces the circulating levels of cells in the mononuclear phagocytic cell lineage (including nonclassical monocytic cells (NCMCs) and Kupffer cells), resulting in increases in circulating enzymes owing to reduced clearance by Kupffer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!